The growth of Internet traffic and the increasing relevance of network connections are driving network operators and researchers towards a new standard in mobile communications known as 5G. One of its features is related to the transition from the frequencies in UHF band to the exploitation of the so-called millimeter waves (mm-waves), between 30 and 300 GHz, with a particular attention to the 60 GHz bandwidth, which can offer significant performances in terms of capacity. The use of these particular frequencies causes a radical change in the transmission mechanisms, limiting their use to microcells with limited coverage. This implies the inability for a network based only on mm-waves to provide a reliable service and the need to maintain a legacy network composed of macrocells and based on lower frequencies. The MiWEBA project therefore proposes a functional split between C-plane and U-plane, respectively dedicated to the transmission of signaling messages by exploiting the macrocells and to high-capacity user transmissions using microcells. One of the main drawbacks of the use of mm-waves is related to the impossibility to use omnidirectional antennas during cell discovery, and the consequent need to exploit beamforming techniques to compensate for the lower coverage. In order to use proper antenna configurations, a localization mechanism allows the BS to obtain information about the positions of the MSs. The entire process can, however, be delayed by the use of unsuitable configurations, due to the inaccuracy of the localization service and the possible presence of obstacles in the propagation environment. The use of algorithms able to define an effective sequence of antenna configurations is thus at the basis of a satisfactory result in terms of time employed during the cell discovery, in addition to the possibility to apply the concept of learning memory and exploit information based on previous transmissions in order to further shorten the duration of the process. In this thesis work we analyze the behavior of three algorithms in propagation environments characterized by different levels of MS location information accuracy and the possible presence of physical obstacles and the impact of learning memory on the cell discovery process.
L’aumento del traffico Internet e l’importanza sempre maggiore delle connessioni di rete stanno spingendo operatori e ricercatori verso la definizione di un nuovo standard nelle comunicazioni mobili noto come 5G. Una delle sue caratteristiche è legata al passaggio dalle frequenze nella banda UHF all'utilizzo delle cosiddette onde millimetriche (mm-waves), comprese tra 30 e 300 GHz, con una particolare attenzione alla banda a 60 GHz, in grado di offrire prestazioni notevoli in termini di capacità. L’utilizzo di queste particolari frequenze comporta un cambiamento radicale nelle modalità di trasmissione, che ne limita l’uso a microcelle con copertura limitata. Ciò implica l’impossibilità da parte di una rete basata solo su mm-waves di fornire un servizio affidabile e la necessità di mantenere una rete legacy composta da macrocelle e basata su frequenze minori. Il progetto MiWEBA propone dunque una separazione funzionale tra C-plane e U-plane, dedicati rispettivamente alla trasmissione di messaggi di signaling sfruttando le macrocelle e a trasmissioni ad alta capacità agli utenti utilizzando microcelle. Uno dei principali svantaggi dell’utilizzo delle mm-waves è legato all'impossibilità di usare antenne omnidirezionali durante la cell discovery, e alla conseguente necessità di usare tecniche di beamforming per compensare la minor copertura. Al fine di utilizzare configurazioni di antenna appropriate, un meccanismo di localizzazione permette alla BS di ottenere informazioni sulle posizioni delle MS. L’intero processo può tuttavia essere ritardato dall'utilizzo di configurazioni non adatte, dovuto all'inaccuratezza del servizio di localizzazione e alla possibile presenza di ostacoli nell'ambiente di propagazione. L’utilizzo di algoritmi in grado di definire un’efficace sequenza di configurazioni di antenna è dunque alla base di un risultato soddisfacente in termini di tempo impiegato durante il processo, oltre alla possibilità di applicare il concetto di learning memory e sfruttare le informazioni basate sulle precedenti trasmissioni al fine di ridurne ulteriormente la durata. In questo lavoro di tesi si analizzano il comportamento di tre algoritmi in ambienti di propagazione caratterizzati da diversi livelli di accuratezza dell’informazione di localizzazione delle MS e dall'eventuale presenza di ostacoli fisici e l’impatto della learning memory nel processo di cell discovery.
Cell discovery with directive antennas for mm-waves 5G networks
TREMOLADA, DENNY
2015/2016
Abstract
The growth of Internet traffic and the increasing relevance of network connections are driving network operators and researchers towards a new standard in mobile communications known as 5G. One of its features is related to the transition from the frequencies in UHF band to the exploitation of the so-called millimeter waves (mm-waves), between 30 and 300 GHz, with a particular attention to the 60 GHz bandwidth, which can offer significant performances in terms of capacity. The use of these particular frequencies causes a radical change in the transmission mechanisms, limiting their use to microcells with limited coverage. This implies the inability for a network based only on mm-waves to provide a reliable service and the need to maintain a legacy network composed of macrocells and based on lower frequencies. The MiWEBA project therefore proposes a functional split between C-plane and U-plane, respectively dedicated to the transmission of signaling messages by exploiting the macrocells and to high-capacity user transmissions using microcells. One of the main drawbacks of the use of mm-waves is related to the impossibility to use omnidirectional antennas during cell discovery, and the consequent need to exploit beamforming techniques to compensate for the lower coverage. In order to use proper antenna configurations, a localization mechanism allows the BS to obtain information about the positions of the MSs. The entire process can, however, be delayed by the use of unsuitable configurations, due to the inaccuracy of the localization service and the possible presence of obstacles in the propagation environment. The use of algorithms able to define an effective sequence of antenna configurations is thus at the basis of a satisfactory result in terms of time employed during the cell discovery, in addition to the possibility to apply the concept of learning memory and exploit information based on previous transmissions in order to further shorten the duration of the process. In this thesis work we analyze the behavior of three algorithms in propagation environments characterized by different levels of MS location information accuracy and the possible presence of physical obstacles and the impact of learning memory on the cell discovery process.File | Dimensione | Formato | |
---|---|---|---|
2016_04_Tremolada.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
2.04 MB
Formato
Adobe PDF
|
2.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/121382