ISOL@MYRRHA is the Isotope Separation On Line (ISOL) facility for radioactive ion beam (RIB) production which will be built at the Belgian Nuclear Research Centre SCK-CEN. In the early stages of the process, a proton beam is sent towards the target material placed inside a container where nuclear reactions between the incoming beam and the target atoms take place. The products of these interaction diffuse out of the target material, effuse out of the cylindrical container and are subsequently ionized and extracted in a RIB which is mass purified by the magnetic separator. In this work, a detailed analytical model has been developed to simulate isotope release curves from thin-foils targets. It involves the separate modelling of diffusion with first and second Fick's law, and effusion with the Monte Carlo code MolFlow+. The two processes have been convoluted and radioactive decay was included to obtain an overall analytical description of the isotope release curve. This model was benchmarked with experimental data on release curve from two target geometries operated at ISOLDE (CERN). Moreover, the isotope in-target production was simulated with the Monte Carlo code FLUKA and it was corrected by the effciency of the transport process calculated through the model so that a comparison with experimental data on yields at the counting station was possible. The good agreement between the model results and experimental data hints at a future applicability of this model for predicting yields and optimizing the geometry in future targets. ISOL targets have to withstand very harsh environments. This work also reports on the literature study to assess the possibility of employing a new class of materials for ISOL targets. It is derived from MAX phases, nanolaminated materials which can be treated to produce porous carbide structures which seem promising for enhancing diffusion of isotopes and withstand the severe conditions. Moreover, thermal calculations have been run to assess the possibility of using a simplified approach to compute the temperature profile in a high-power target where the input heat is provided by the beam-energy deposition.
ISOL@MYRRHA è la facility che sarà costruita presso il centro di ricerca SCK-CEN in Belgio e produrrà fasci di ioni radioattivi (RIB) tramite il metodo di separazione isotopica on line (ISOL). Il processo comprende l'interazione di un fascio di protoni con un target in modo tale che vengano prodotti isotopi radioattivi al suo interno. Questi diffondono all'esterno del materiale solido, escono dal contenitore attraverso voli liberi e arrivano in uno ionizzatore nel quale vengono ionizzati e in seguito accelerati. Una massa atomica particolare viene successivamente selezionata dal fascio radioattivo tramite un sistema magnetico e indirizzata verso una stazione sperimentale. In questo lavoro è stato sviluppato un modello che descrive analiticamente la diffusione dei radioisotopi nel materiale solido e la loro effusione, tramite un codice Monte Carlo, dal target material fino allo ionizzatore. Una convoluzione tra questi due processi viene effettuata e pesata per il decadimento radioattivo in modo tale da riprodurre con una funzione analitica il profilo temporale di rilascio isotopico dal target considerato. Il modello è stato successivamente validato con dati reperiti in letteratura riportanti curve di rilascio sperimentali misurate presso ISOLDE (CERN). La stima della produzione di isotopi nel target è stata effettuata con FLUKA e questi risultati sono stati accoppiati al modello sviluppato per valutare la resa del target nella produzione di particolari isotopi da confrontare con dati sperimentali. I nostri risultati hanno mostrato un buon accordo con le misure riportate in letteratura e il modello sembra perciò utilizzabile per ottimizzare target futuri. Un ISOL target deve resistere alle dure condizioni che si creano al suo interno dovute alle radiazioni e alle alte temperature. Questo lavoro riporta anche uno studio bibliografico per valutare il possibile utilizzo di target composti da nuovi carburi porosi derivanti da MAX-phase materials. Inoltre sono state condotte simulazioni termiche per validare un metodo semplificato per il calcolo del profilo di temperatura in un high-power target.
Development and benchmark of an analytical model for isotope release from ISOL thin-foils targets
EGORITI, LUCA
2015/2016
Abstract
ISOL@MYRRHA is the Isotope Separation On Line (ISOL) facility for radioactive ion beam (RIB) production which will be built at the Belgian Nuclear Research Centre SCK-CEN. In the early stages of the process, a proton beam is sent towards the target material placed inside a container where nuclear reactions between the incoming beam and the target atoms take place. The products of these interaction diffuse out of the target material, effuse out of the cylindrical container and are subsequently ionized and extracted in a RIB which is mass purified by the magnetic separator. In this work, a detailed analytical model has been developed to simulate isotope release curves from thin-foils targets. It involves the separate modelling of diffusion with first and second Fick's law, and effusion with the Monte Carlo code MolFlow+. The two processes have been convoluted and radioactive decay was included to obtain an overall analytical description of the isotope release curve. This model was benchmarked with experimental data on release curve from two target geometries operated at ISOLDE (CERN). Moreover, the isotope in-target production was simulated with the Monte Carlo code FLUKA and it was corrected by the effciency of the transport process calculated through the model so that a comparison with experimental data on yields at the counting station was possible. The good agreement between the model results and experimental data hints at a future applicability of this model for predicting yields and optimizing the geometry in future targets. ISOL targets have to withstand very harsh environments. This work also reports on the literature study to assess the possibility of employing a new class of materials for ISOL targets. It is derived from MAX phases, nanolaminated materials which can be treated to produce porous carbide structures which seem promising for enhancing diffusion of isotopes and withstand the severe conditions. Moreover, thermal calculations have been run to assess the possibility of using a simplified approach to compute the temperature profile in a high-power target where the input heat is provided by the beam-energy deposition.File | Dimensione | Formato | |
---|---|---|---|
2016_04_Egoriti.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
14.12 MB
Formato
Adobe PDF
|
14.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/121384