The connective tissues attaching, structurally and functionally, other tissues between them in the formation of organs. A particular connective tissue is the bone tissue, consisting of cells and intracellular matrix identifyed into organic and inorganic. The first one is responsible for the elastic properties of the tissue, the second one for the hardness properties. The bone owes its particular structural organization to the presence of two variants of bone: cortical (compact) and trabecular (spongy). Such a presence is found in all bones in the human body, to an extent and in a different division (figure 1). In the shaft of long bones, trabecular bone is found in the inner zone, surrounded by cortical bone at the outer instead. The epiphysis of long bones, mainly consist of trabecular bone. The tibia is the second longest bone of the human body, placed in the anteromedial portion of the leg. Fractures affecting the diaphyseal portion of the leg are the most common long bones, with an incidence of about 16.9 fractures per 100,000 inhabitants per year [12]. To really understand the biomechanics of the fracture is graphically evaluated the variation of the deformation characterizing the bone in relation to the forces that were imposed. Two different portion of the graphic are found: an elastic and plastic behavior separated from the yield point. The fracture occurs when the imposed stress exceeds a certain value by continuing to urge the sample in the plastic range[17]. The circular fixator consists of a series of rings, joined by longitudinal micrometric bars, on which are applied thin wires tensioned and screws that represent elements connecting with the bone[37,38]. The fixator ensures mechanical stability to the bone stumps and at the same time maintains the vitality, thus allowing a proper regeneration of physiological bone tissue. Set up of the circular esternal fixator In this apparatus, the wide range of accessories, allows the achievement of an infinite variety of executable structures. Once the ring or the half ring is chosen, the centering is done tring to obtain a distance from the anatomical limb of at least 2 cm on each side. Then the insertion of the wires is executed alternatively to the ring and in a opposite way to the nearest ring. This provision is responsible of blocking the ring. The wires are clamped to the ring via bolts, and placed in tension, with a variable force between 50 and 130 kg. To ensure a higher level of system stability, screws are inserted through the bone and fixed to the ring by means of specific mechanical components [24,43]. The presence of screws in the system makes the fixation more rigid compared, instead, to the only presence of the wires that keeps the system more elastic. It was checked the feasibility of securing the K-wire ring using the rivet to find out an alternative method to the traditional use of the bolt and nut. It was added a grooved washer below the rivet head leaving this washer in the direct contact with the ring and making it responsible for housing the wire. The tests were conducted thanks to the universal testing machine Material Test System 810, a single-axis machine with two columns with a frame maximum capacity of 250 kN. The axial tensile tests were carried out on the wire with an axial load cell capable of providing a stress equal to 25 kN. The tests were conducted in displacement, with the speed of 1 mm / s and an acquisition data of 10 Hz. At first two single tests were carried out to analyze the ability to maintain the wire in place by a titanium rivet when put under tension up to 110 kg. Those two tests were different because the arrangement of the rivet and washer took place, at first on a normal hole of the circle and subsequently on a hole characterized by a groove. It was chosen then to evaluate the contribution that the simultaneous mounting of two rivets on the same wire could produce. A wire fixing was performed by a steel rivet on two diametrically opposed holes of the ring. At the conclusion of this test, it was cut the wire that connected the two rivets, allowing the implementation of other two single test on the same rivets. It was observed if the levels of this two single rivet holding could be compared to the sealing levels of the first two individual tests. Each bone segment and each fracture treated with circular external fixator, requires specific screws and special assembly. Innovative mechanical elements have been created to make the external circular fixator a more efficient method of synthesis due to their easy assembly and their particular biomechanical characteristics and biocompatibility. It has highlighted the behavior of titanium screws through practical tests on animal bone. The inclusion of titanium screw has been evaluated , making use of three different insertion methods. It was estimated that using an electric motor to insert the screw through the first and second cortical was the only successful method of insertion. Subsequently it was evaluated the orientation of the screw insertion into the bone to ensure the firm grip in the bone and a proper connection with the ring of the external fixator. An innovative adjustable clamp was created, which it was able to remove the constraints of a specific orientation of the transosseous screw. It was finally searched a more immediate fixing technique of the transosseous elements to the ring looking for to abandon the classic use of the bolt and nut. The proposal was to use, the rivets already on the market, generally used in the aerospace field. It was added a grooved washer below the rivet head leaving this washer in the direct contact with the ring and making it responsible for housing the wire. They were performed some experimental tests on the construct rivet-grooved washer, obtaining good results by implementing the fixing of the wire on two diametrically opposite holes. The achievement of a little less than 100kg sealing was obtained keeping the thread in its starting position. The peculiarity of the circular fixators lies in their minimally invasive nature that leads to compliance of the soft tissue without interfering with the bone vascularity and hematoma fracture. The new design solutions have worked with the aim of ensuring a greater yield of holding and tolerability between the screw and the bone. It was thus fabricated a new screw of a hypoallergenic material to enhance biocompatibility, it was manufactured an innovative adjustable clamp to break free from constraints the orientation of the screw, it was finally proposed the rivet to implement a rapid fixing on the ring. Some interesting results were achived using a steel rivet combined with a spline washer by running the wire fixing tests on two diametrically opposite holes. The trial is not over yet, it has reached promising results but needs further verification and improvements such as the proposal to implement the milling on the washer groove to create friction in the wire housing. This proposal has been incorporated as a final solution of a series of steps required to achieve a secure and improved connection between the bone and the external device.
I tessuti connettivi congiungono, strutturalmente e funzionalmente, altri tessuti tra di loro nella formazione di organi. Un particolare tessuto connettivo è il tessuto osseo, costituito da cellule e da matrice intracellulare, quest’ultima distinta in organica e una inorganica. La prima è responsabile delle caratteristiche elastiche del tessuto, la seconda delle proprietà di durezza. L’osso deve la sua particolare organizzazione strutturale alla compresenza di due varianti di tessuto osseo : corticale(compatto) e trabecolare(spugnoso) (figura 1). Tale compresenza è riscontrabile in tutte le ossa del corpo umano, in misura e in ripartizione differente. Nella diafisi delle ossa lunghe, il tessuto osseo trabecolare è riscontrabile nella zona interna, circondato da osso corticale nella parte invece più esterna. Le epifisi delle ossa lunghe, sono costituite prevalentemente da tessuto osseo trabecolare. La tibia è il secondo osso più lungo del corpo umano, collocato nella porzione anteromediale della gamba. Le fratture che interessano il tratto diafisario della gamba sono le più comuni delle ossa lunghe, con un'incidenza di circa 16,9 fratture ogni 100.000 abitanti per anno [12]. Per realmente capire la biomeccanica della frattura si valuta graficamente la variazione della deformazione caratterizzante l’osso in relazione alle forze che sono state imposte. Si riscontrano così una zona a comportamento elastico ed una a comportamento plastico separate dal punto di snervamento. La frattura avviene quando la sforzo imposto raggiunge valori elevati continuando a sollecitare il provino in campo plastico [17]. Il fissatore circolare è costituito da una serie di anelli, raccordati da barre micrometriche longitudinali, sui quali vengono applicati sottili fili tensionati e viti che rappresentano gli elementi di presa ossea [37,38]. Il fissatore garantisce stabilità meccanica ai monconi ossei e al tempo stesso ne mantiene la vitalità, permettendo quindi una propria rigenerazione di tessuto osseo fisiologico. Set up del fissatore esterno circolare In questo apparato, l'ampio corredo di accessori, permette il conseguimento di una varietà infinita di strutture eseguibili. Una volta scelta la tipologia di anello preferita, semianello o anello che sia, si esegue il centraggio rispetto l’arto anatomico per avere una distanza dall’apparecchio di almeno 2 cm per parte. Si esegue poi l’inserzione dei fili posizionati alternativamente rispetto l’anello, ed inoltre opposti all’anello adiacente. Con tale disposizione si riesce a bloccare l’anello. I fili vengono serrati all’anello tramite bulloni, ed posti in tensione, tramite il tendifilo dinamometrico con una forza variabile tra i 50 e 130 kg. Per garantire un livello di stabilità del sistema maggiore si inseriscono delle viti nell’osso e si fissano al cerchio tramite componenti meccanici quali bandiera e blocchetto fissavite[24,43]. La presenza di viti nel sistema rende la fissazione più rigida rispetto, invece, alla sola presenza dei fili che mantiene il sistema più elastico. È stata verificata la fattibilità del fissaggio dei fili di K all’anello tramite ribattitura per trovare una metodica alternativa al classico utilizzo del bullone e dado. Si è aggiunta una rondella scanalata al di sotto della testa del rivetto lasciando tale rondella a contatto diretto con l’anello e rendendola responsabile dell’alloggiamento del filo. Le prove sono state condotte mediante la macchina di prova universale Material Test System 810, una macchina monoassiale a due colonne con capacità massima del telaio di 250 kN. I test di trazione assiale sul filo sono stati effettuati con una cella di carico assiale capace di fornire una sollecitazione pari a 25 kN. Le prove sono state condotte in spostamento, con velocità di 1 mm/s e un’acquisizione dati di 10 Hz. Si sono prima effettuate due prove singole per analizzare la capacità di mantenere il filo in posizione da parte di un rivetto in titanio quando messo in tensione fino a 110 kg. Si è trattato di due prove differenti nella disposizione del costrutto rivetto più rondella, dapprima su di un foro del cerchio senza scanalatura e successivamente su di un foro con scanalatura. Si è scelto poi di valutare l’apporto che il fissaggio simultaneo di due rivetti sul medesimo filo potesse esibire. È stato eseguito un fissaggio del filo da parte di un rivetto in acciaio su due fori diametralmente opposti dell’anello. Alla conclusione di tale prova, è stato tagliato il filo che congiungeva i due rivetti, permettendo così l’attuazione di altre due prove singole sugli stessi rivetti. È stato osservato se i livelli di tenuta del singolo rivetto in questione potessero essere paragonati ai livelli di tenuta delle prime due prove singole. Ogni segmento osseo ed ogni frattura, trattati con fissatore esterno circolare, richiedono specifiche viti da osso e montaggi particolari. Si presentano degli innovativi elementi meccanici che per la loro facile eseguibilità di montaggio e per le loro particolari caratteristiche biomeccaniche e di biocompatibilità hanno reso il fissatore esterno circolare un più efficiente metodo di sintesi. Si è evidenziato il comportamento delle viti in titanio tramite test pratici su osso di animale. Si è andati a valutare l’inserimento della vite in titanio, usufruendo di tre metodologie d’inserimento differenti. Si è riscontrata un’unica metodica d’inserimento della vite attraverso la prima e seconda corticale avvenuta con successo, ed è stata quella tramite motore elettrico. Successivamente sono state fatte delle considerazioni sull’orientamento d’inserimento della vite nell’osso per garantire la solida presa nell’osso e un’adeguata connessione con l’anello del fissatore esterno. Si è creato così un innovativo morsetto orientabile, che eliminasse i vincoli di uno specifico orientamento della vite transossea. Si è infine ricercata una tecnica più immediata di fissaggio degli elementi di presa all’anello cercando quindi di abbandonare il classico utilizzo del bullone e dado. La proposta è stata quella di usufruire, di rivetti già in commercio, usati generalmente in ambito aereospaziale. Si è aggiunta una rondella scanalata al di sotto della testa del rivetto lasciando tale rondella a contatto diretto con l’anello e rendendola responsabile dell’alloggiamento del filo. Sono stati eseguiti dei test sperimentali sul costrutto rondella scanalata-rivetto, ottenendo buoni risultati attuando il fissaggio del filo su due fori diametralmente opposti. Si è ottenuto il raggiungimento di poco meno di 100kg di tenuta mantenendo il filo nella sua posizione di partenza. La peculiarità dei fissatori circolari sta nella loro natura minimamente invasiva che conduce al rispetto dei tessuti molli senza interferire con la vascolarizzazione dell'osso e dell'ematoma di frattura. Le nuove soluzioni progettuali hanno lavorato con l’obiettivo di garantire un rendimento sempre maggiore di presa e di tollerabilità tra vite-osso. È stata dunque fabbricata una nuova vite di un materiale anallergico per migliorare la biocompatibilità, è stato fabbricato un innovativo morsetto orientabile per liberare da vincoli l’orientamento della vite, è stato infine proposto il rivetto per attuare un rapido fissaggio sul cerchio. Si sono raggiunti dei risultati interessanti usufruendo di un rivetto costituito interamente in acciaio combinato all’utilizzo della rondella scanalata, eseguendo prove di fissaggio del filo su due fori diametralmente opposti. La sperimentazione non è ancora conclusa, ha raggiunto risultati promettenti che necessitano di ulteriori verifiche e migliorie come la proposta di attuare delle zigrinature sulla scanalatura della rondella così da creare attrito nel luogo di alloggiamento del filo. Tale proposta è stata recepita come soluzione finale di una serie di passaggi necessari al conseguimento di una sicura e migliorata connessione tra osso e apparecchio esterno.
Fissatori circolari esterni per ossa lunghe. Nuove soluzioni costruttive
BEORCHIA, MARTA
2015/2016
Abstract
The connective tissues attaching, structurally and functionally, other tissues between them in the formation of organs. A particular connective tissue is the bone tissue, consisting of cells and intracellular matrix identifyed into organic and inorganic. The first one is responsible for the elastic properties of the tissue, the second one for the hardness properties. The bone owes its particular structural organization to the presence of two variants of bone: cortical (compact) and trabecular (spongy). Such a presence is found in all bones in the human body, to an extent and in a different division (figure 1). In the shaft of long bones, trabecular bone is found in the inner zone, surrounded by cortical bone at the outer instead. The epiphysis of long bones, mainly consist of trabecular bone. The tibia is the second longest bone of the human body, placed in the anteromedial portion of the leg. Fractures affecting the diaphyseal portion of the leg are the most common long bones, with an incidence of about 16.9 fractures per 100,000 inhabitants per year [12]. To really understand the biomechanics of the fracture is graphically evaluated the variation of the deformation characterizing the bone in relation to the forces that were imposed. Two different portion of the graphic are found: an elastic and plastic behavior separated from the yield point. The fracture occurs when the imposed stress exceeds a certain value by continuing to urge the sample in the plastic range[17]. The circular fixator consists of a series of rings, joined by longitudinal micrometric bars, on which are applied thin wires tensioned and screws that represent elements connecting with the bone[37,38]. The fixator ensures mechanical stability to the bone stumps and at the same time maintains the vitality, thus allowing a proper regeneration of physiological bone tissue. Set up of the circular esternal fixator In this apparatus, the wide range of accessories, allows the achievement of an infinite variety of executable structures. Once the ring or the half ring is chosen, the centering is done tring to obtain a distance from the anatomical limb of at least 2 cm on each side. Then the insertion of the wires is executed alternatively to the ring and in a opposite way to the nearest ring. This provision is responsible of blocking the ring. The wires are clamped to the ring via bolts, and placed in tension, with a variable force between 50 and 130 kg. To ensure a higher level of system stability, screws are inserted through the bone and fixed to the ring by means of specific mechanical components [24,43]. The presence of screws in the system makes the fixation more rigid compared, instead, to the only presence of the wires that keeps the system more elastic. It was checked the feasibility of securing the K-wire ring using the rivet to find out an alternative method to the traditional use of the bolt and nut. It was added a grooved washer below the rivet head leaving this washer in the direct contact with the ring and making it responsible for housing the wire. The tests were conducted thanks to the universal testing machine Material Test System 810, a single-axis machine with two columns with a frame maximum capacity of 250 kN. The axial tensile tests were carried out on the wire with an axial load cell capable of providing a stress equal to 25 kN. The tests were conducted in displacement, with the speed of 1 mm / s and an acquisition data of 10 Hz. At first two single tests were carried out to analyze the ability to maintain the wire in place by a titanium rivet when put under tension up to 110 kg. Those two tests were different because the arrangement of the rivet and washer took place, at first on a normal hole of the circle and subsequently on a hole characterized by a groove. It was chosen then to evaluate the contribution that the simultaneous mounting of two rivets on the same wire could produce. A wire fixing was performed by a steel rivet on two diametrically opposed holes of the ring. At the conclusion of this test, it was cut the wire that connected the two rivets, allowing the implementation of other two single test on the same rivets. It was observed if the levels of this two single rivet holding could be compared to the sealing levels of the first two individual tests. Each bone segment and each fracture treated with circular external fixator, requires specific screws and special assembly. Innovative mechanical elements have been created to make the external circular fixator a more efficient method of synthesis due to their easy assembly and their particular biomechanical characteristics and biocompatibility. It has highlighted the behavior of titanium screws through practical tests on animal bone. The inclusion of titanium screw has been evaluated , making use of three different insertion methods. It was estimated that using an electric motor to insert the screw through the first and second cortical was the only successful method of insertion. Subsequently it was evaluated the orientation of the screw insertion into the bone to ensure the firm grip in the bone and a proper connection with the ring of the external fixator. An innovative adjustable clamp was created, which it was able to remove the constraints of a specific orientation of the transosseous screw. It was finally searched a more immediate fixing technique of the transosseous elements to the ring looking for to abandon the classic use of the bolt and nut. The proposal was to use, the rivets already on the market, generally used in the aerospace field. It was added a grooved washer below the rivet head leaving this washer in the direct contact with the ring and making it responsible for housing the wire. They were performed some experimental tests on the construct rivet-grooved washer, obtaining good results by implementing the fixing of the wire on two diametrically opposite holes. The achievement of a little less than 100kg sealing was obtained keeping the thread in its starting position. The peculiarity of the circular fixators lies in their minimally invasive nature that leads to compliance of the soft tissue without interfering with the bone vascularity and hematoma fracture. The new design solutions have worked with the aim of ensuring a greater yield of holding and tolerability between the screw and the bone. It was thus fabricated a new screw of a hypoallergenic material to enhance biocompatibility, it was manufactured an innovative adjustable clamp to break free from constraints the orientation of the screw, it was finally proposed the rivet to implement a rapid fixing on the ring. Some interesting results were achived using a steel rivet combined with a spline washer by running the wire fixing tests on two diametrically opposite holes. The trial is not over yet, it has reached promising results but needs further verification and improvements such as the proposal to implement the milling on the washer groove to create friction in the wire housing. This proposal has been incorporated as a final solution of a series of steps required to achieve a secure and improved connection between the bone and the external device.File | Dimensione | Formato | |
---|---|---|---|
2016_04_Beorchia.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Fissatori circolari esterni per ossa lunghe - Nuove soluzioni costruttive
Dimensione
9.84 MB
Formato
Adobe PDF
|
9.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/121421