Space components are frequently subjected to high frequency uncorrelated short excitations during their operational life; launching phase, solar arrays deployment and stage separation are just few of the most demanding phases in terms of structural loading. This kind of loads are identified as mechanical shocks. Their effects on the spacecraft and on on board instrumentation can lead to excessive structural stress and malfunctioning, eventually causing the mission failure or the break of sensitive elements such as electronic circuits or optical devices. The aim of this work is to study this mechanical event to understand how to predict it and avoid damage to the structures. In particular a numerical tool is developed, using a Finite Element Method, which provides the loading effects on the considered structure, an Aluminum plate, in terms of acceleration time history and Shock Response Spectra. The latter is a key quantity since it quantifies the severity of a shock by means of peak acceleration. A test facility has been built to derive a set of shock response spectra under different configurations which has been used to validate the analytical model. This mechanical bench falls into the category of the mid-far field shock verification and it can excite the item under test either with an In Plane load, generating tension/compression waves, or with an Out Of Plane load, leading to a flexural wave propagation phenomenon. At the end of this work a deep characterisation of this facility is obtained in terms of its main parameters: a direct link is defined between facility configuration and Shock Response Spectra. This has allowed for the loading effects to be known prior to carry out any test campaign, avoiding the trial and error procedure which is the usual practice for shock analysis. Accelerations up to 3000 g have been observed matching the standard value for launcher interface requirements. The obtained Shock Response Spectra are then compared to NASA’s requirements to check if the tuning of the Shock Test Facility has been correctly accomplished. The Finite Element models have shown very good correlation with the measurements for both models, the In Plane and Out of Plane.
I componenti spaziali sono soggetti di frequente ad eccitazioni ad alte frequenze, di durata molto breve e con comportamento fortemente non correlato; la fase di lancio, il dispiegamento di pannelli solari e il rilascio degli stadi del lanciatore sono solo alcune delle fasi più critiche in termini di sollecitazioni strutturali. Tali carichi sono definiti shock meccanici. I loro effetti sull’hardware spaziale possono portare a danni strutturali causando il fallimento della missione o la rottura di parti sensibili come circuiti elettronici o dispositivi ottici. L'obiettivo di questa tesi è studiare tale evento cercando di capire come può essere predetto in modo da evitare danni alle strutture interessate. Si è sviluppato un modello usando l'approccio agli Elementi Finiti in grado di fornire gli effetti in termini di accelerazioni e di Spettro di risposta allo shock. Fondamentale importanza è rivestita da quest'ultima grandezza poiché essa quantifica la severità dello shock in termini di picchi di accelerazione. È stata inoltre allestita una struttura di test per validare il modello numerico e, soprattutto, per creare un banco prova utilizzabile per ulteriori test. Esso appartiene alla categoria degli shock a medio/basso livello di severità ed è possibile eccitare il componente sia nel piano, con onde di compressione, sia perpendicolarmente ad esso con onde di flessione. A valle di tale tesi è stata riportata una completa ed esaustiva caratterizzazione del dispositivo sperimentale legata ai suoi parametri principali: si è infatti stabilita una diretta correlazione tra la configurazione della struttura anti shock e il risultante Spettro di Risposta allo Shock. Grazie a questa procedura di messa a punto, è possibile generare uno Spettro di Risposta allo Shock già noto a priori abbandonando l'approccio trial and error tipico nella verifica strutturale di shock. Sono state osservate accelerazioni fino a 3000 g, valore ricorrente nei requisiti di carico ammissibile dei maggiori lanciatori. Le curve di Spettro di Risposta allo Shock sono state confrontate con gli standard ammessi dalla NASA per capire se il banco prova fosse stato correttamente configurato. I modelli agli Elementi Finiti, nel Piano e perpendicolarmente ad esso, mostrano un riscontro molto positivo con le curve di Spettro di Risposta allo Shock misurate.
Numerical and experimental mechanical shock characterisation for space structures through the design and development of a shock test facility
DE LELLIS, SALVATORE
2015/2016
Abstract
Space components are frequently subjected to high frequency uncorrelated short excitations during their operational life; launching phase, solar arrays deployment and stage separation are just few of the most demanding phases in terms of structural loading. This kind of loads are identified as mechanical shocks. Their effects on the spacecraft and on on board instrumentation can lead to excessive structural stress and malfunctioning, eventually causing the mission failure or the break of sensitive elements such as electronic circuits or optical devices. The aim of this work is to study this mechanical event to understand how to predict it and avoid damage to the structures. In particular a numerical tool is developed, using a Finite Element Method, which provides the loading effects on the considered structure, an Aluminum plate, in terms of acceleration time history and Shock Response Spectra. The latter is a key quantity since it quantifies the severity of a shock by means of peak acceleration. A test facility has been built to derive a set of shock response spectra under different configurations which has been used to validate the analytical model. This mechanical bench falls into the category of the mid-far field shock verification and it can excite the item under test either with an In Plane load, generating tension/compression waves, or with an Out Of Plane load, leading to a flexural wave propagation phenomenon. At the end of this work a deep characterisation of this facility is obtained in terms of its main parameters: a direct link is defined between facility configuration and Shock Response Spectra. This has allowed for the loading effects to be known prior to carry out any test campaign, avoiding the trial and error procedure which is the usual practice for shock analysis. Accelerations up to 3000 g have been observed matching the standard value for launcher interface requirements. The obtained Shock Response Spectra are then compared to NASA’s requirements to check if the tuning of the Shock Test Facility has been correctly accomplished. The Finite Element models have shown very good correlation with the measurements for both models, the In Plane and Out of Plane.File | Dimensione | Formato | |
---|---|---|---|
2016_04_DeLellis.pdf
Open Access dal 09/04/2017
Descrizione: Testo della tesi
Dimensione
50.07 MB
Formato
Adobe PDF
|
50.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/121549