A stretchable metal interconnect is a key ingredient to ensure electrical continuity in a matrix of rigid sensors spread onto a deformable substrate. This technology is attractive for many application fields, namely wearable energy storage devices and continuous healthcare monitoring. Usually, stretchable interconnects consist in thin metal films deposited on polymers and patterned in a meandering fashion: large strains can be accommodated by in-plane and out-plane distortions of the serpentine structure, while the underlying compliant substrate prevents strain localization and ductile metal failure. Functional reliability of stretchable interconnects, then, dramatically relies on the mechanics at the characteristic length scale of the meander (10-100 µm) and the metal film (1-0.1 µm). This project was devoted to the identification of suitable combinations of mechanical testing and imaging techniques to gain insights on the local mechanics of stretchable interconnects. Two different metal/polymer systems were addressed: 1 µm thick Aluminum (Al) film onto 10 µm thick Polyimide (PI) and 100 nm thick Gold (Au) film evaporated onto 100 µm thick Polydimethylsiloxane (PDMS). Different geometries were obtained, so as to investigate the influence of the meander shape on the local mechanics. Electromechanical testing of Al/PI interconnects did show that the Al film remained conductive (although free-standing) even after polymer failure, suggesting the mechanical reliability issues of Al/PI interconnects was mainly related to metal/polymer delamination. Indeed, a poor toughness was measured for the Al/PI interface (90 J/m2), by means of peel tests combined with in-situ scanning electron microscopy. In-situ confocal laser scanning microscopy (CLSM) revealed an interplay between delamination, buckling and fracture, enabling to quantify the extent of delamination based on the measured out-plane lift of the metal film. Matching results by functional- (electrical) and mechanical- (in-situ CLSM) reliability tests, a comprehensive comparison and ranking of different meandering geometries was enabled. In-situ CLSM of Au/PDMS samples upon uniaxial stretch revealed functional failure at moderate applied strains (5%), owed to extensive cracking of the PDMS surface. Such embrittlement was attributed to the harshness of the O2 plasma treatment which preceded metal deposition. To address this issue, three different combinations of plasma treatment parameters were explored. Uniaxial stretch with in-situ CLSM of PDMS samples revealed an alternation of transverse cracks and embrittled regions on the failed surface, the latter undergoing well ordered buckling instabilities. The use of spectral analysis was proposed in order to monitor the evolution of the crack density and the buckling patterns. When modeling the embrittled PDMS skin as a stiff film on a compliant substrate, results suggested a relation between the level of stiffening of the plasma treated PDMS layer and the plasma treatment parameters. To conclude, the combination of mechanical testing and in-situ imaging has been proposed as a relevant method to characterize the reliability of deformable metal/polymer interconnects. Addressing two specific case studies, it was shown that both the interconnect design and the fabrication process can be reviewed based on the local mechanics, to which the sole functional characterization has no access.
Le interconnessioni metalliche deformabili sono ingredienti fondamentali per garantire la continuità elettrica in una matrice di sensori rigidi distribuiti su un substrato soffice. Questa tecnologia offre nuove prospettive in numerosi campi applicativi, come dispositivi elettronici indossabili e monitoraggio continuato dei parametri vitali di un individuo. Solitamente le interconnessioni deformabili consistono in film sottili metallici depositati su substrati polimerici e sagomati secondo un disegno a serpentina: quest'ultima assicura la possibilità di subire grandi deformazioni senza rischi di frattura, mentre il substrato sottostante impedisce fenomeni di localizzazione della deformazione, ritardando fallimenti di natura plastica. L'affidabilità meccanica delle interconnessioni deformabili dipende quindi strettamente dalla meccanica alla scala caratteristica della struttura a serpentina (10-100 µm) e del film metallico stesso (1-0.1 µm). Questo progetto è finalizzato all'identificazione di opportune combinazioni di test meccanici e tecniche di microscopia per studiare il comportamento delle interconnessioni deformabili. Sono stati indagati due diversi sistemi materiali: un film di Alluminio (Al) spesso 1 µm depositato su 10 µm di Poliimmide (PI) ed un film di oro (Au) di spessore 100 nm, ottenuto per evaporazione su un substrato di Polidimetilsilossano (PDMS). Per investigare l'influenza del disegno strutturale sulla performance meccanica, sono state realizzate diverse geometrie del pattern metallico. Secondo la caratterizzazione elettromeccanica delle interconnessioni Al/PI, il film di Al conserva conducibilità anche oltre il fallimento del substrato polimerico. Poiché ciò può accadere solo se l'interconnessione metallica resta sospesa, l'evidenza sperimentale suggerisce la rilevanza della delaminazione metallo/polimero quale principale fenomeno di fallimento. In effetti, l'adesione tra Al e PI misurata mediante test di peeling con microscopia elettronica a scansione in-situ suggerisce una bassa tenacità di interfaccia (90 J/m2). La combinazione di profilometria laser confocale con i test meccanici ha permesso di rivelare un'interazione tra la delaminazione, il buckling e la frattura, dando inoltre la possibilità di quantificare l'entità della delaminazione sulla base del sollevamento relativo del film metallico. Combinando i risultati della caratterizzazione funzionale (i.e., elettrica) e in-situ, è stato possibile identificare le geometrie meglio performanti. Utilizzando un profilometro laser confocale per osservare le interconnessioni Au/PDMS sottoposte a trazione uniassiale, è stata osservata un'inattesa fragilità della superficie del PDMS, responsabile del fallimento precoce dell'interconnessione (deformazione 5%). Tale infragilimento è stato attribuito all'aggressività del trattamento al plasma che precede la fase di deposizione del metallo. Per indagare questa problematica, tre diverse combinazioni di parametri di esposizione al plasma sono state messe a confronto. Sottoponendo a trazione monoassiale campioni di solo PDMS trattato al plasma, è stata osservata la formazione di un'alternanza fratture trasversali e bande infragilite, queste ultime caratterizzate da un buckling estremamente regolare. L'evoluzione della densità di fratture e della morfologia delle instabilità a compressione sono state analizzate mediante analisi spettrale delle topografie in-situ. Modellando lo strato di PDMS infrgilito come un film rigido su un substrato cedevole, è stato possibile suggerire una correlazione tra il grado di irrigidimento dello strato superficiale e le condizioni di trattamento al plasma. Concludendo, la combinazione di test meccanici ed osservazione microscopica ha permesso di caratterizzare e revisionare sia il disegno strutturale sia il processo di fabbricazione di interconnessioni deformabili sulla base di argomenti appartenenti alla meccanica alla piccola scala, ai quali la sola caratterizzazione funzionale non ha accesso.
In-situ mechanical characterization of deformable metal/polymer electrical interconnects
CATTARINUZZI, EMANUELE
Abstract
A stretchable metal interconnect is a key ingredient to ensure electrical continuity in a matrix of rigid sensors spread onto a deformable substrate. This technology is attractive for many application fields, namely wearable energy storage devices and continuous healthcare monitoring. Usually, stretchable interconnects consist in thin metal films deposited on polymers and patterned in a meandering fashion: large strains can be accommodated by in-plane and out-plane distortions of the serpentine structure, while the underlying compliant substrate prevents strain localization and ductile metal failure. Functional reliability of stretchable interconnects, then, dramatically relies on the mechanics at the characteristic length scale of the meander (10-100 µm) and the metal film (1-0.1 µm). This project was devoted to the identification of suitable combinations of mechanical testing and imaging techniques to gain insights on the local mechanics of stretchable interconnects. Two different metal/polymer systems were addressed: 1 µm thick Aluminum (Al) film onto 10 µm thick Polyimide (PI) and 100 nm thick Gold (Au) film evaporated onto 100 µm thick Polydimethylsiloxane (PDMS). Different geometries were obtained, so as to investigate the influence of the meander shape on the local mechanics. Electromechanical testing of Al/PI interconnects did show that the Al film remained conductive (although free-standing) even after polymer failure, suggesting the mechanical reliability issues of Al/PI interconnects was mainly related to metal/polymer delamination. Indeed, a poor toughness was measured for the Al/PI interface (90 J/m2), by means of peel tests combined with in-situ scanning electron microscopy. In-situ confocal laser scanning microscopy (CLSM) revealed an interplay between delamination, buckling and fracture, enabling to quantify the extent of delamination based on the measured out-plane lift of the metal film. Matching results by functional- (electrical) and mechanical- (in-situ CLSM) reliability tests, a comprehensive comparison and ranking of different meandering geometries was enabled. In-situ CLSM of Au/PDMS samples upon uniaxial stretch revealed functional failure at moderate applied strains (5%), owed to extensive cracking of the PDMS surface. Such embrittlement was attributed to the harshness of the O2 plasma treatment which preceded metal deposition. To address this issue, three different combinations of plasma treatment parameters were explored. Uniaxial stretch with in-situ CLSM of PDMS samples revealed an alternation of transverse cracks and embrittled regions on the failed surface, the latter undergoing well ordered buckling instabilities. The use of spectral analysis was proposed in order to monitor the evolution of the crack density and the buckling patterns. When modeling the embrittled PDMS skin as a stiff film on a compliant substrate, results suggested a relation between the level of stiffening of the plasma treated PDMS layer and the plasma treatment parameters. To conclude, the combination of mechanical testing and in-situ imaging has been proposed as a relevant method to characterize the reliability of deformable metal/polymer interconnects. Addressing two specific case studies, it was shown that both the interconnect design and the fabrication process can be reviewed based on the local mechanics, to which the sole functional characterization has no access.File | Dimensione | Formato | |
---|---|---|---|
2016_04_PhD_Cattarinuzzi.pdf
Open Access dal 16/03/2017
Descrizione: Testo della tesi
Dimensione
41.68 MB
Formato
Adobe PDF
|
41.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/122305