The world of MicroElectroMechanical Systems (MEMS) had an impressive development in recent times. More and more efficient devices have been produced, with small size and characterized by low power consumption. In order to deal with new challenges new and more powerful modeling tools, able to represent the response of the devices even in the nonlinear regime, are needed. The present work is part of a collaborative project between STMicroelectronics, leader in microtechnology industry, and the Department of Civil and Environmental Engineering of Politecnico di Milano and aims at achieving a complete characterization of the nonlinear dynamic behavior of microstructures, in particular of a torsional resonator. In the work is presented a nonlinear electromechanical model, which can represent the dynamic behavior of an out-of-plane torsional resonator electrostatically actuated and the study is based on three different levels. First, analytical solutions of the equation governing the motion of the system (approximated at first and third order (Duffing’s equation)) are found. These solutions can be used in order to represent the frequency response of the system in proximity to the resonant frequency, for force levels that do not cause excessively nonlinear behavior. Then, a numerical solution of the complete equation of motion is proposed. This is reached through two successive discretizations in time and frequency domains, obtaining, through the application of Hilber-Hughes-Taylor method, a nonlinear algebraic equation which is solved by a Newton-Raphson iterative procedure. This solution allows to represent the response of the system even in highly nonlinear regime, to recognize some characteristic phenomena such as the dynamic pull-in and to define the safe operation region of the device. In order to validate the different proposed solutions and the ability of the electromechanical model to represent the actual nonlinear behavior of the device, a third experimental phase is then introduced. A first set of static and dynamic (with white noise) tests are presented with the purpose of calibrating the parameters of the model. A second phase of dynamic measurements with frequency sweep allows to obtain the frequency response of the device in linear and nonlinear regime. These experimental results can be compared with the ones obtained from the analytical solutions and from the numerical integration of the governing equation. Finally, two practical cases are proposed for the application of the knowledge of nonlinear dynamics of the torsional resonator gained from this study: the equation governing the dynamic of the resonant elements in an out of plane accelerometer, which measures accelerations in the orthogonal direction, is derived; two solutions for the compensation of nonlinearity in the dynamic behavior of the torsional resonator are proposed, the first by means of a mechanical stiffness which varies with the rotation of the resonating mass, the second through the design of a new anchoring system of the mass to the substrate that creates an additional component of nonlinear mechanical stiffness equal and opposite to the electrostatic one. Both proposals are validated by means of finite element analysis.
Il mondo dei microsistemi elettromeccanici ha riscosso negli ultimi decenni sempre maggiore interesse sia dal punto di vista del mercato che della ricerca, che si è rivolta alla realizzazione di dispositivi sempre più performanti, di dimensioni contenute ed a basso consumo energetico. Per far fronte alle nuove sfide si sono dimostrati indispensabili nuovi e più potenti strumenti di modellazione in grado di cogliere la risposta dei dispositivi anche in regime non lineare. Il presente elaborato si innesta all’interno di un progetto di collaborazione tra la STMicroelectronics, azienda leader nel campo delle microtecnologie, ed il Dipartimento di Ingegneria Civile e Ambientale del Politecnico di Milano e si pone l’obiettivo di una completa caratterizzazione del comportamento dinamico non lineare in microstrutture, con particolare riferimento ad un risonatore torsionale. Nell’elaborato si presenta un modello elettromeccanico non lineare con il quale si modella il comportamento dinamico di un risonatore torsionale fuori piano attuato elettrostaticamente. Lo studio condotto si articola su tre diversi livelli. In primo luogo si cercano soluzioni analitiche dell’equazione governante il moto del sistema, approssimata al primo e al terz’ordine, riconducendosi all’equazione dell’oscillatore di Duffing, che consentono di rappresentare la risposta in frequenza del sistema in prossimità della frequenza propria, per valori della forzante che non inducono comportamenti eccessivamente non lineari. In un secondo momento si propone una soluzione numerica dell’equazione del moto in forma completa, attraverso successive discretizzazioni nel dominio del tempo e delle frequenze, riconducendosi, mediante l’applicazione del metodo di Hilber-Hughes-Taylor ad un’equazione algebrica non lineare risolta con la procedura iterativa di Newton-Raphson. Tale soluzione consente di rappresentare la risposta del modello anche in ambito fortemente non lineare e di cogliere alcuni fenomeni caratteristici come in particolare il pull-in dinamico e di definire le condizioni di regolare operatività del dispositivo. Per validare le diverse soluzioni proposte e la capacità del modello elettromeccanico stesso di rappresentare il reale comportamento non lineare del dispositivo si procede secondo una terza fase sperimentale, caratterizzata da una prima serie di prove statiche e dinamiche con rumore bianco con l’obiettivo di calibrare i parametri del modello ed una seconda campagna di misure dinamiche con sweep in frequenza dalla quale si ottiene la risposta in frequenza del dispositivo in regime lineare e non lineare, che può essere confrontata con quanto ottenuto dalle soluzioni analitiche e dall’integrazione numerica dell’equazione governante. Si propongono infine due casi pratici di applicazione delle conoscenze acquisite dallo studio della dinamica non lineare del risonatore torsionale: si ricava l’equazione governante la dinamica degli elementi risonanti di un accelerometro fuori piano, che consente di rilevare accelerazioni ortogonali al piano di sviluppo principale del dispositivo; si propongono due soluzioni per la compensazione delle non linearità elettrostatiche del comportamento dinamico del risonatore torsionale mediante un progetto del dispositivo che produca una rigidezza meccanica variabile con la rotazione della massa risonante e mediante l’ideazione di un nuovo sistema di ancoraggio della massa risonante al substrato che induca la nascita di componenti aggiuntive di rigidezza meccanica non lineare di valore pari e opposto a quelle elettrostatiche. Entrambe le proposte vengono validate mediante analisi ad elementi finiti.
Comportamento dinamico non lineare in microstrutture : modellazione e validazione sperimentale
GARATTI, ALESSANDRO;DOTI, MILENA
2015/2016
Abstract
The world of MicroElectroMechanical Systems (MEMS) had an impressive development in recent times. More and more efficient devices have been produced, with small size and characterized by low power consumption. In order to deal with new challenges new and more powerful modeling tools, able to represent the response of the devices even in the nonlinear regime, are needed. The present work is part of a collaborative project between STMicroelectronics, leader in microtechnology industry, and the Department of Civil and Environmental Engineering of Politecnico di Milano and aims at achieving a complete characterization of the nonlinear dynamic behavior of microstructures, in particular of a torsional resonator. In the work is presented a nonlinear electromechanical model, which can represent the dynamic behavior of an out-of-plane torsional resonator electrostatically actuated and the study is based on three different levels. First, analytical solutions of the equation governing the motion of the system (approximated at first and third order (Duffing’s equation)) are found. These solutions can be used in order to represent the frequency response of the system in proximity to the resonant frequency, for force levels that do not cause excessively nonlinear behavior. Then, a numerical solution of the complete equation of motion is proposed. This is reached through two successive discretizations in time and frequency domains, obtaining, through the application of Hilber-Hughes-Taylor method, a nonlinear algebraic equation which is solved by a Newton-Raphson iterative procedure. This solution allows to represent the response of the system even in highly nonlinear regime, to recognize some characteristic phenomena such as the dynamic pull-in and to define the safe operation region of the device. In order to validate the different proposed solutions and the ability of the electromechanical model to represent the actual nonlinear behavior of the device, a third experimental phase is then introduced. A first set of static and dynamic (with white noise) tests are presented with the purpose of calibrating the parameters of the model. A second phase of dynamic measurements with frequency sweep allows to obtain the frequency response of the device in linear and nonlinear regime. These experimental results can be compared with the ones obtained from the analytical solutions and from the numerical integration of the governing equation. Finally, two practical cases are proposed for the application of the knowledge of nonlinear dynamics of the torsional resonator gained from this study: the equation governing the dynamic of the resonant elements in an out of plane accelerometer, which measures accelerations in the orthogonal direction, is derived; two solutions for the compensation of nonlinearity in the dynamic behavior of the torsional resonator are proposed, the first by means of a mechanical stiffness which varies with the rotation of the resonating mass, the second through the design of a new anchoring system of the mass to the substrate that creates an additional component of nonlinear mechanical stiffness equal and opposite to the electrostatic one. Both proposals are validated by means of finite element analysis.File | Dimensione | Formato | |
---|---|---|---|
2015_Luglio_Doti_Garatti.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
22.26 MB
Formato
Adobe PDF
|
22.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/122324