Lung edema is a life-threatening condition occurring when fluid extravasates from pulmonary vessels and capillaries into interstitium and into alveoli. The cause of pulmonary edema can be ascribed either to an increase in pulmonary capillary pressure or an increase in micro-vascular permeability due to fragmentation of the extracellular matrix and of endothelial glycocalix. Several degrees of pulmonary edema have been identified; an early phase, named interstitial edema, involves fluid accumulation in the peri-alveolar septal interstitium, while the late phase causes alveolar flooding thus compromising lung diffusing capacity. In normal conditions, lung is well protected against the development of pulmonary edema, due to interstitial tissue rigidity and vaso-active responses aiming to divert blood flow to non-edematous and well perfused regions. Mechanisms triggering fluid accumulation in edemagenic conditions involves modification of both vascular compartment and interstitial fluid balance. The aim of this PhD Thesis is to develop an integrated approach, combining innovative modelling frameworks and new experimental data, in order to exploit the adaptive response of lung to edemagenic conditions and evaluate the interaction among the different physiological variables. A model based on several well-known phenomena of capillary network perfusion was included in a set of equations describing the interstitial fluid balance to provide an integrate view of the main mechanisms involved in pulmonary edema development. Alveolar mechanics was studied by in-vivo microscopy in normal and edemagenic conditions in a rabbit lung model; arteriolar and capillary adaptive response to hypoxia administration was evaluated and vascular mechanics was estimated by applying the model to experimental images. Finally, MRI sequences were applied to investigate the regional distribution of lung edema and evaluate both the sensitivity of the imaging technique to moderate lung density change and the different response to hydraulic and permeability-induced edema. An integrate approach bridging the gap between modelling and experimental data allows to fully and more deeply characterize the mechanisms involved in edema formation.
L’edema polmonare è una grave condizione che avviene quando del fluido filtra dai vasi e dai capillari polmonari all’interno dell’interstizio e degli alveoli. Le cause dell’edema polmonare possono essere ascritte ad un aumento della pressione capillare o ad un aumento della permeabilità micro-vascolare causata dalla frammentazione della matrice extracellulare e del glicocalice endoteliale. Esistono due gradi di edema polmonare; una fase iniziale, chiamata edema interstiziale, è caratterizzata dall’accumulo fluido nell’interstizio settale peri-alveolare, mentre la fase successiva è caratterizzata da edema alveolare con compromissione della capacità diffusiva polmonare. In condizioni normali, il polmone è ben protetto contro lo sviluppo di edema, grazie alla rigidità tissutale e alle risposte vaso-attive che distribuiscono il flusso sanguigno nelle regioni non edematose. Meccanismi che attivano l’accumulo fluido nelle condizioni edemageniche comprendono modifiche sia del compartimento vascolare sia dell’equilibrio fluido interstiziale. Lo scopo di questa Tesi di Dottorato è di sviluppare un approccio integrato, combinando modelli innovativi e nuovi dati sperimentali, al fine di indagare le risposte adattive del polmone a condizioni edemageniche e valutare l’interazione tra le diverse variabili fisiologiche. Un modello basato su fenomeni di perfusione capillare è stato incluso in un insieme di equazioni che descrive l’equilibrio fluido interstiziale per fornire uno strumento integrato per lo studio dei meccanismi dello sviluppo di edema. La meccanica degli alveoli polmonari è stata studiata con un approccio di microscopia in-vivo in condizioni normali e edemageniche in un modello animale di polmone (coniglio); sono state studiate le risposte adattative delle arteriole e dei capillari polmonari alla somministrazione di ipossia e la meccanica vascolare è stata stimata applicando il modello alle immagini sperimentali. Infine, due sequenze MRI sono state utilizzate per investigare la distribuzione regionale dell’edema e valutare sia la sensitività delle tecniche di imaging a moderati aumenti di densità polmonare sia le diverse risposte all’edema idraulico e a quello non-cardiogenico. Un approccio integrato che fonda la modellistica con i dati sperimentali perfette di caratterizzare in modo più completo i meccanismi alla base dello sviluppo dell’edema polmonare.
Numerical and experimental models of pulmonary interstitial edema development
MAZZUCA, ENRICO
Abstract
Lung edema is a life-threatening condition occurring when fluid extravasates from pulmonary vessels and capillaries into interstitium and into alveoli. The cause of pulmonary edema can be ascribed either to an increase in pulmonary capillary pressure or an increase in micro-vascular permeability due to fragmentation of the extracellular matrix and of endothelial glycocalix. Several degrees of pulmonary edema have been identified; an early phase, named interstitial edema, involves fluid accumulation in the peri-alveolar septal interstitium, while the late phase causes alveolar flooding thus compromising lung diffusing capacity. In normal conditions, lung is well protected against the development of pulmonary edema, due to interstitial tissue rigidity and vaso-active responses aiming to divert blood flow to non-edematous and well perfused regions. Mechanisms triggering fluid accumulation in edemagenic conditions involves modification of both vascular compartment and interstitial fluid balance. The aim of this PhD Thesis is to develop an integrated approach, combining innovative modelling frameworks and new experimental data, in order to exploit the adaptive response of lung to edemagenic conditions and evaluate the interaction among the different physiological variables. A model based on several well-known phenomena of capillary network perfusion was included in a set of equations describing the interstitial fluid balance to provide an integrate view of the main mechanisms involved in pulmonary edema development. Alveolar mechanics was studied by in-vivo microscopy in normal and edemagenic conditions in a rabbit lung model; arteriolar and capillary adaptive response to hypoxia administration was evaluated and vascular mechanics was estimated by applying the model to experimental images. Finally, MRI sequences were applied to investigate the regional distribution of lung edema and evaluate both the sensitivity of the imaging technique to moderate lung density change and the different response to hydraulic and permeability-induced edema. An integrate approach bridging the gap between modelling and experimental data allows to fully and more deeply characterize the mechanisms involved in edema formation.File | Dimensione | Formato | |
---|---|---|---|
Tesi finale_Enrico Mazzuca.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
5.19 MB
Formato
Adobe PDF
|
5.19 MB | Adobe PDF | Visualizza/Apri |
Risposta commenti revisore 1.pdf
accessibile in internet per tutti
Dimensione
84.77 kB
Formato
Adobe PDF
|
84.77 kB | Adobe PDF | Visualizza/Apri |
Risposta commenti revisore 2.pdf
accessibile in internet per tutti
Dimensione
214.63 kB
Formato
Adobe PDF
|
214.63 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/122716