Abstract Introduction Heart failure is a complex and progressive cardiac pathology characterized by structural or functional deficiencies, which determine the inability of the heart to properly eject blood into the circulatory system. In the United States, about 650,000 new cases are diagnosed every year with a 50% of probability of death in the 5 years. Heart failure can affect the left or the right side of the heart (left or right ventricular heart failure). It can be systolic, meaning that the ventricle does not contract normally, or diastolic, when the ventricle does not relax normally. At first, this pathological condition can be managed through lifestyle changes or drugs. Nevertheless, as heart failure worsens medical and surgical procedures may be necessary. Heart transplant is considered the best therapy to treat the pathology but, because of the lack of heart donors, this solution is often not achievable. For this reason, in recent decades, ventricular assist devices (VADS) have been developed and used as bridge to transplant (BTT) or as destination therapy (DT). VADs are battery operated, mechanical pump-type devices surgically implanted. They can be used as a support for the left ventricle (LVAD), the right ventricle (RVAD) or they can assist both ventricles (BiVAD). Although their efficacy in guarantying survival and a decent quality of life for patients, their use implies risks and complications such as, haemorrhage, infection, device malfunction, acute right ventricular failure and thrombosis. Thrombosis is considered the most frequent and life threatening risk related to the use of a VAD. It consists in the development of thrombus loads within any component of the device. These clot may cause locally modified fluid dynamics, they may detach from the original site leading to thrombo-embolic events, they may affect platelets causing their activation and the amplification of the thrombotic phenomenon itself. The better understand the effect of thrombosis on platelet activation is the main interest of the present project. Platelets, the clotting cellular factor, are disc-shaped non-nucleated cells. They take part in the processes which lead to thrombus formation. In fact, chemical and mechanical stimulations of platelets lead to the phenomenon of platelet adhesion, activation and aggregation, which are fundamental for coagulation and thrombus formation. The effect on platelets of pre-existing thrombosis consequent to VAD implantation has not clearly been evaluated. The aim of the present project is to evaluate if VAD-related thrombosis acts as an adjuvant for further platelet activation amplifying, thus, the thrombotic phenomenon itself. State of the Art Pump thrombosis has been widely diagnosed, observed in vivo and reported in literature. It normally develops is an acute way and it is often unpredictable. Therefore, it can be deduced that the phenomenon occurs in a short period of time and this may be related to the fact that a thrombus load may be a powerful platelet activator and, thus, amplify the phenomenon of thrombosis. To quantify the effect induced by the presence of a thrombus load on platelet activation, the Platelet Activity State (PAS) assay, which has been prevalently used to evaluate shear stress-related platelet activation, has been chosen. It allows the 1:1 correlation between the stimulus induced on platelets by the agonist and the output of the test. Platelet activation may also be a result of the presence of an interface between platelets and an exogenous material. The contact-related platelet activation is probably the phenomenon occurring in the conditions tested for this project. In fact, platelets interfacing a thrombus load become activated as a result of the contact between the two parts. Materials and Methods To evaluate the effect of preexisting thrombosis on platelet activation, platelets are interfaced with thrombus loads, both red (mainly consisting in red blood cells) and white (mainly consisting in red platelets). Platelet activation induced by the presence of thrombi is then measured through Platelet Activity State (PAS) assay. To execute the experiments, blood is drawn from healthy donors, Platetet Rich Plasma (PRP) is obtained by blood centrifugation and Gel Filtrated Platelet (GFP) is obtained by gel-filtration of PRP. Part of whole blood (WB) and PRP is preserved to create red and white thrombi. Experiments are executed both in static and dynamic conditions to evaluate the effect of convective phenomena, which are very relevant in vivo. Dynamic tests are executed in absence and in presence of a VAD. Static conditions experiments Whole blood is inserted at the base of round bottom tubes with volumes equal to 15 µl, 30µl, 60µl and 120µl. The same procedure is followed with PRP added with CaCl2. After the incubation phase which is necessary to allow clot formation, 4 ml of GFP solution are pipetted on the top of each clot. PAS assay is performed at 1min, 10min and 30min since the beginning of the test. In addition, few samples are collected and prepare for SEM image acquisition. Both for red and white thrombus, a negative control test is executed by adding 4ml of GFP solution to 120µl of Platelet Buffer. For white thrombus load, a further negative control is executed by adding 4ml of GFP solution to 120µl of PRP not added with CaCl2 and, therefore, not able to clot. Dynamic conditions experiments Dynamic tests are performed to evaluate platelet activation in presence of convective phenomena. To perform this type of tests a hydraulic circuit has been built. It is a closed loop composed of a peristaltic pump, a pump inset and a circuit tube Tests are performed at two flow rate conditions, corresponding to two set velocities for the pump, 40rpm and 200rpm. These values are sufficient to generate convective effects but contained shear stresses in order not to obtain shear-related platelet activation. In order to introduce the presence of a thrombus inside the hydraulic circuit, the clot is prepared on top of a solid metallic frame that is then placed in a fixed location in the circuit tube (MESH experiment). The circuit is filled with GFP solution (about 10ml) and PAS assay is executed on samples collected at 1min, 10min and 30min. For dynamic tests two negative controls are performed by measuring PAS for GFP solution flowing in the circuit at the considered flow rate and for GFP solution at 0rpm. Dynamic conditions experiments in presence of a Ventricular Assist Devices A preliminary study has been additionally performed by exposing platelets both to the presence of a preformed red or white thrombus load and to shear stress due to the action of the VAD. Due to planning differences between this experimental test and the previous two, this experiment is considered not comparable to the others. WB and PRP thrombus loads of 120µl of volume, are inserted in a circuit with capacity of about 100ml. The close loop is filled with GFP solution and kept at 37°. The VAD is activated at physiological operating velocity of 9,600rpm and PAS values are measured at 1min, 10min, 30min, 60min and 120min since pump activation. For both red and white thrombus, two negative control tests are performed by measuring PAS for GFP solution flowing in the circuit at the considered flow rate in absence of the mesh or interfacing a clean one. Results For all the executed tests, red and white thrombus loads appear to be morphologically different. WB clots appear to be dry, whereas PRP clots appear damp. Static conditions experiments Activation data for samples interfaced with WB thrombus loads are statistically similar to the values of the negative controls (Fig 0.1). Images acquired by SEM, instead, show activated platelets even at the beginning of the experiment. Fig 0.1.: Platelet Activity State (PAS) due to the presence of WB thrombus load interfacing platelets (Mean and St.Dev). The legend indicates the amounts of clot volume and control solution (Plt buffer) to which 4ml of GFP are added. N experiments = 4 from different donors. *p<0.05. PAS results obtained for samples been in contact with PRP clots show a relevant activation for platelets. PAS values for the tested samples are different from both the control tests and proportional to the volume of clot inserted into the tube (Fig. 0.2.). The activation phenomenon seems to saturate at the beginning of the experiment and, in fact, there are not relevant differences between PAS values for the same samples at different time points. Fig 0.2.: Platelet Activity State (PAS) due to the presence of PRP thrombus load interfacing platelets (Mean and St.Dev). The legend indicates the amounts of clot volume and control solutions (Plt buffer and PRP not added with CaCl2) to which 4ml of GFP are added. N experiments = 6 from different donors. *p<0.05. Differences statistically relevant with Control1 are in blue and differences statistically relevant with Control2 are in black. Dynamic conditions experiments For a set velocity of 40rpm for the pump, PAS values result to be different from both the controls; tests executed with WB and PRP clots do not show statistical differences at any time point. The phenomenon is quicker at the beginning of the experiment with just a slight increment over time (Fig. 0.3.). For a set velocity of 200rpm for the pump (Fig 0.4), PAS values result to be generally similar to the one obtained at lower velocity. In fact, the effect on activation of the thrombus is confirmed and no statistical difference is observed between samples tested with WB and PRP clots. Fig 0.3.: Platelet Activity State (PAS) for the dynamic test at 40rpm (Mean and St.Dev). *p<0.05. Differences statistically relevant with Control1 are in blue and differences statistically relevant with Control2 are in black. Fig 0.4.: Platelet Activity State (PAS) for the dynamic test at 200rpm (Mean and St.Dev). *p<0.05. Statistically relevant differences with Control1 are in blue and statistically relevant differences with Control2 are in black. The comparison between data obtained for tests at the two velocities shows similar numerical values of platelet activation. Therefore, this result suggests that the introduction of convective effects at low velocities is sufficient to saturate the phenomenon. In fact the increase in convective effects introduced at 200rpm does not lead to further activation for platelets. Data obtained for red thrombus load through dynamic tests show really different behaviour with respect to static tests. In this case, in fact, WB clots prove to activate platelets and this result is probably related to the introduction of convective effects in dynamic experiments. Dynamic conditions experiments in presence of a Ventricular Assist Devices The effect of the clot on platelet activation results evident in case of PRP while for experiments executed with WB thrombus loads platelet activation has not been observed (Fig 0.5.). Control1 and Control2 seem to be different at 30min and at 60min, suggesting platelet activation over time due to the mesh. The activation given by the presence of the thrombus is confirmed over time, the PAS of the samples been in contact with the PRP mesh differs (with p-value not higher than 0.1) from Control1 and Control2 at various time points, especially after long time since pump activation. A saturation of the phenomenon has not been observed, probably because of the higher volume of GFP and thus, the higher number of platelets which, in this case, interface the clot. Fig 0.5.: Platelet Activity State (PAS) for dynamic test with HA5 LVAD (Mean and St.Dev). *p<0.05. **p≤0.1 Statistically relevant differences with Control1 are in blue and statistically relevant differences with Control2 are in black. Discussions Static conditions experiments As observed in the previous section, PAS values for samples been in contact with WB suggested a low activation of platelets, while the correspondent SEM images showed activated cells. WB clots, being dry and attached to the tube surface in static conditions, have probably implied activation just for platelets located at the interface between the GFP solution and the clot or, anyway, very close to the clot. The mixing phase executed right before every collection of the platelet sample (so at 1min, 10 min and 30min) was probably not sufficient to achieve a uniform mixing of platelets in the entire volume contained in the tube. Results have shown that a PRP thrombus load causes platelets to activate in a way directly proportional to the amount of clot contained in the corresponding round bottom tube. In fact, the higher is the volume of the thrombus, the more are the activated platelets. The morphological difference between the two typologies of thrombus, WB clots are dry and PRP clots are damp, can be considered as the reason why PAS results for red thrombi are similar to the control results while PAS results for white thrombi are, for high volumes of clot, statistically different from both the considered control samples. In presence of white thrombus load, in fact, GFP solution is probably easily mixed with the clot. Therefore, there is a high number of platelets which get in contact with the thrombus and platelets get activated more easily in case of white thrombus than with red thrombus. As a consequence, platelet activation increases as GFP interfaces with a higher amount of clot because the higher is the volume of the clot, the higher is the number of platelets interfacing with it and, thus, activating. Thrombin is considered to be the main agonist for the activation of platelets. In the tests considered for this project, thrombin may still be expressed on the fibrin net of the thrombi or it may be generated by the TF which flows, in a small part, in blood. As platelets get in contact with thrombin, a sequence of events occurs leading to activation of platelets. Dynamic conditions experiments PAS data for dynamic conditions experiments confirm the phenomenon described for static test results. In fact, in the majority of cases, PAS data for tested samples differ significantly from both the control samples. This difference demonstrates the procoagulant effect of the thrombus on platelets. Results, showing a relevant rate especially at the beginning of the test, can be read as a confirmation of the immediacy of the phenomenon: platelet activation occurs as platelets get in contact with the thrombus. However, unfortunately, it is not possible to explain all the aspects of the phenomenon because of the high number of variables taking part in it and because of the complex, unpredictable and not always repeatable dynamic of the events happening in the circuit as the experiment begins. Similar evaluations can be made about the comparison between samples tested with WB and PRP clots. The PAS values result to be similar in the two cases at each time point. The relevant difference between the PAS results related to the two type of thrombus described for the static test is not visible for the dynamic one. It is likely that platelets in the dynamic test, being able to flow in the loop, get easily in contact with both PRP and WB thrombus load, even if the latter is dry. However, it is difficult to assert the exact dynamic of what happens to a dry and a damp clot being washed by a platelet solution at various velocities. By comparing results obtained for samples tested at both the velocities, it can be said that the presence of a thrombus load, both red and white, interfacing the platelets implies an increase in platelet activation independently on the velocity at which they are flowing. Therefore, the introduction of convective effects at low velocity is sufficient to saturate the phenomenon and the increment in velocity and in convection does not induce further activation. Dynamic conditions experiments in presence of a Ventricular Assist Devices PAS results confirm the overall hypothesis of increase in platelet activation due to the presence of a thrombus load interfacing platelets and they also show, at the end of the test, differences between the two controls. The mesh may cause further platelet activation for two main reasons: fluid dynamic effects due to the presence of the mesh or effects of the mesh material on platelets. As statistically relevant difference and difference with a significance level not higher than 0.1 are observed between PAS values of these two samples at all the other time points, it can be affirmed that the thrombus load do cause activation for platelets independently on the presence of the stainless steel mesh. Conclusions The present project focused on the relevant role of platelets in incrementing thrombosis, once thrombosis is already occurring. The demonstrated activation of cells due to their contact with a thrombus load is important to understand the dynamic of the thrombotic phenomenon. The thesis thus proved that VAD-related thrombosis is an amplifying phenomenon, as it leads to activation of platelets which, in turn, induce the development of thrombosis itself.
Sommario Introduzione L’insufficienza o scompenso cardiaco è una complessa patologia caratterizzata da carenze di tipo strutturale e funzionale che determinano una riduzione della capacità del cuore di eiettare in modo corretto il sangue nel sistema circolatorio. I dati attuali riportano, negli Stati Uniti, più di 650,000 diagnosi di scompenso cardiaco all’anno con una mortalità del 50% entro i 5 anni successivi. Lo scompenso cardiaco può interessare sia il lato destro sia il lato sinistro del cuore e si definisce sistolico, quando il ventricolo non si contrae in modo fisiologico, e diastolico quando, invece, il ventricolo non si rilassa in modo fisiologico. Allo stadio iniziale l’insufficienza cardiaca si cura modificando lo stile di vita e con terapia farmacologica adeguata. Nello stadio avanzato della patologia, invece, il ricorso a procedure chirurgiche si rende necessario. Il trapianto di cuore è la migliore terapia per trattare questa patologia ma il ridotto numero di donatori rende questa soluzione non sempre perseguibile. Per questo motivo, negli ultimi decenni, si sono sviluppati dispositivi di assistenza ventricolare (VAD) utilizzati sia come ponte al trapianto, bridge to transplant, che come terapia definitiva, destination therapy. I VAD sono pompe meccaniche impiantate chirurgicamente che assistono il cuore in caso di insufficienza cardiaca supportandone l’azione pompante e garantendo il flusso sanguigno in tutto l’organismo. Si parla di LVAD per il cuore sinistro, RVAD per il cuore destro e BiVAD nel caso in cui il cuore abbia bisogno di assistenza bilaterale. Pur essendo efficaci nel garantire ai pazienti la sopravvivenza e una qualità di vita discreta, il loro utilizzo implica rischi e problematiche come emorragia, infezione, malfunzionamento, ricaduta della patologia sul ventricolo controlaterale e trombosi. La trombosi è considerata la più frequente e pericolosa delle complicanze relative all’uso di un VAD. Consiste nella formazione di trombi inizialmente adesi alle componenti del dispositivo. Questi coaguli possono sia causare una condizione fluidodinamica alterata, che distaccarsi dal sito originale portando allo sviluppo di fenomeni tromboembolici, che avere un effetto sulle piastrine portando alla loro attivazione e all’amplificazione dello stesso fenomeno trombotico. Lo scopo di questo progetto è comprendere meglio l’effetto della trombosi sull’attivazione piastrinica. Le piastrine, considerate la componente cellulare determinante per il fenomeno della coagulazione, sono cellule non nucleate dalla forma discoidale. Esse prendono parte ai processi che portano alla formazione di un trombo. Infatti, stimolazioni chimiche o meccaniche delle piastrine suscitano fenomeni di adesione, di attivazione o di aggregazione, fondamentali per la formazione di un coagulo. L’effetto sulle piastrine della presenza di fenomeni trombotici dovuti all’impianto di un VAD non sono stati finora sufficientemente valutati. Lo scopo del progetto di tesi è proprio quello di valutare se la trombosi indotta dall’impianto di un VAD, oltre a comportare un forte rischio di embolia per il paziente, implichi anche un incremento di attivazione per le piastrine e, quindi, un maggiore rischio di trombosi. Stato dell’Arte Il fenomeno della trombosi, come conseguenza dell’impianto di un VAD, è stato ampiamente diagnosticato, osservato in vivo e riportato in letteratura. La trombosi ha spesso un decorso acuto ed è difficilmente prevedibile. Si può quindi dedurre sia che il fenomeno si sviluppi in un breve periodo di tempo sia che un trombo, anche di piccole dimensioni, agisca come potente attivatore di piastrine amplificando, quindi, il fenomeno della trombosi. Il saggio Platelet Activity State (PAS), utilizzato in letteratura prevalentemente per valutare l’attivazione piastrinica dovuta a shear stress, è stato usato per quantificare l’effetto indotto dalla presenza di un coagulo di sangue sull’attivazione piastrinica. Il saggio PAS permette una correlazione 1:1 tra lo stimolo a cui le piastrine sono sollecitate e l’output del test. L’attivazione piastrinica può anche essere il risultato della presenza di un’interfaccia tra piastrine e un materiale esogeno. L’attivazione piastrinica dovuta a contatto è probabilmente il meccanismo in atto nei test eseguiti per questo progetto. Infatti, le piastrine che interfacciano un coagulo si attivano per effetto del contatto tra le due parti. Materiali e Metodi Per valutare l’effetto di una preesistente trombosi sull’attivazione piastrinica, le piastrine sono state messe a contatto con trombi, sia rossi (formati prevalentemente da globuli rossi) che bianchi (formati prevalentemente da piastrine). L’attivazione piastrinica data dal contatto con i coaguli è stata, successivamente, valutata tramite il saggio Platelet Activity State (PAS). Per eseguire gli esperimenti, il sangue viene prelevato da donatori volontari, il Platetet Rich Plasma (PRP) viene ottenuto tramite centrifugazione e il Gel Filtrated Platelet (GFP) viene ottenuto tramite filtrazione del PRP. Sia il sangue intero (WB) che il PRP sono preservati in piccola parte per permettere la formazione dei coaguli rossi e bianchi. I test sono effettuati in condizioni statiche e in condizioni dinamiche per valutare gli effetti dei fenomeni convettivi fortemente rilevanti in vivo. I test dinamici sono effettuati in assenza e in presenza di un dispositivo di assistenza ventricolare. Esperimenti in condizione statica Volumi crescenti di sangue intero (15 µl, 30µl, 60µl e 120µl) sono posti alla base di uno stesso numero di provette. La stessa procedura è seguita per il PRP con aggiunta di CaCl2. A seguito della fase di incubazione necessaria a permettere la formazione dei coaguli, 4 ml della soluzione di GFP vengono aggiunti ai coaguli nelle provette. Il PAS test viene effettuato a 1min, 10min e 30min dal contatto tra le due parti. In aggiunta, alcuni campioni sono preparati per l’acquisizione di immagini al microscopio SEM. Sia per i coaguli di WB che di PRP, viene effettuato un controllo negativo valutando i valori di PAS per GFP aggiunto a 120µl di Platelet Buffer. Per i test con coagulo di PRP viene considerato, in aggiunta, un controllo negativo valutando i valori di PAS per GFP aggiunto a 120µl di PRP al quale non è stato precedentemente aggiunto il CaCl2, quindi non in grado di coagulare. Esperimenti in condizione dinamica I test dinamici vengono effettuati per valutare l’attivazione piastrinica in presenza di fenomeni convettivi. Per l’esecuzione di questo tipo di esperimenti è stato necessario costruire un piccolo circuito idraulico composto da una pompa peristaltica, il corrispondente tubo sotto-pompa e il tubo del circuito. I test vengono eseguiti a due condizioni di portata, corrispondenti a velocità imposte alla pompa di 40rpm e 200rpm. Questi valori risultano idonei a generare sia effetti convettivi non trascurabili che valori di shear stress non sufficienti ad indurre attivazione piastrinica. La formazione di un coagulo, di volume pari a 120µl, di WB o di PRP avviene su una mesh di acciaio inossidabile successivamente inserita nel circuito (esperimento MESH). Il circuito viene riempito con la soluzione di GFP (circa 10ml) e il saggio PAS viene effettuato su campione prelevati a 1min, 10min e 30min. Per i test dinamici vengono considerati due controlli negativi, misurando i valori di PAS per campioni prelevati agli stessi istanti temporali dalla sola soluzione di GFP circolante nel circuito e dalla soluzione di GFP a 0rpm. Esperimenti in condizione dinamica in presenza di VAD Uno studio preliminare è stato effettuato esponendo piastrine alla presenza di un coagulo di WB o PRP precedentemente formato su una mesh e di shear stress dovuti alla presenza di un VAD. A causa delle differenze di progetto tra questa e le precedenti campagne sperimentali, questo test non è considerato comparabile con i precedenti due. Il coagulo di WB o di PRP di volume pari a120µl viene inserito in un circuito con capacità di circa 100ml. Il circuito viene riempito con la soluzione di GFP e mantenuto a 37°. Il VAD viene avviato alla velocità di 9600rpm, i valori di PAS sono misurati a 1min, 10min, 30min, 60min e 120min dall’attivazione del dispositivo. Sono stati considerati due controlli negativi misurando i valori di PAS per campioni prelevati agli stessi istanti temporali dalla sola soluzione di GFP circolante nel circuito alla velocità considerata e in assenza della mesh o in presenza di una mesh pulita. Risultati Da osservazioni morfologiche si è riscontrato che i coaguli di WB si presentavano secchi mentre i coaguli di PRP si presentavano più umidi. Esperimenti in condizione statica I risultati relativi agli esperimenti condotti con coaguli di WB rivelano valori di attivazione piastrinica statisticamente simili ai risultati ottenuti per i controlli negativi (Fig.0.1). Immagini ottenute al SEM invece mostrano piastrine attivate anche all’inizio dell’esperimento. Fig 0.1.: Platelet Activity State (PAS) dovuto alla presenza di un coagulo di WB che interfaccia le piastrine (media e dev. St.). In legenda sono indicati i volumi di trombo e il volume di soluzione (PLt Buffer) utilizzata per il controllo ai quali vengono aggiunti 4ml di GFP. N esperimenti = 4 da diversi donatori. *p<0.05. I risultati di saggio PAS ottenuti per gli esperimenti con i coaguli di PRP, invece, mostrano un’attivazione piastrinica notevolmente differente da entrambi i controlli e proporzionale alla quantità di coagulo inserito nelle provette (Fig. 0.2.). Il fenomeno di attivazione sembra arrivare a saturazione all’inizio dell’esperimento e, infatti, non si notano variazioni statistiche tra i valori di PAS misurati a diversi istanti di tempo. Fig 0.2.: Platelet Activity State (PAS) dovuto alla presenza di un coagulo di PRP che interfaccia le piastrine (media e dev. St.). In legenda sono indicati i volumi di trombo e i volumi di soluzione (PLt Buffer) utilizzati per i controlli. A tutti i volumi vengono aggiunti 4ml di GFP. N esperimenti = 6 da diversi donatori. *p<0.05. Le differenze statisticamente significative con il Control1 sono indicate in blu mentre le differenze statisticamente significative con il Control2 sono indicate in nero. Esperimenti in condizione dinamica Alla velocità di 40rpm imposta alla pompa, i valori di PAS risultano differenti da entrambi i controlli, test effettuati per coaguli di WB e PRP non mostrano differenze e si riscontra una elevata velocità di attivazione all’inizio dell’esperimento con piccoli incrementi nella fase successiva (Fig. 0.3.). Il fenomeno a velocità di 200rpm per la pompa presenta le stesse dinamiche (Fig. 0.4). I valori di PAS risultano simili a quelli ottenuti a velocità inferiore. Infatti, si conferma l’effetto del trombo sull’attivazione piastrinica e non si osservano differenze tra i campioni testati con coaguli di sangue e di PRP. Fig 0.3.: Platelet Activity State (PAS) per i test dinamici eseguiti a 40rpm (media e dev. St.). *p<0.05. Le differenze statisticamente significative con il Control1 sono indicate in blu mentre le differenze statisticamente significative con il Control2 sono indicate in nero. Fig 0.4.: Platelet Activity State (PAS) per i test dinamici eseguiti a 200rpm (media e dev. St.). *p<0.05. Le differenze statisticamente significative con il Control1 sono indicate in blu mentre le differenze statisticamente significative con il Control2 sono indicate in nero. I valori di attivazione ottenuti per le due velocità risultano simili. Si deduce quindi che l’introduzione di effetti convettivi a basse velocità sia sufficiente alla saturazione del fenomeno di attivazione. Per quanto riguarda i dati ottenuti per i campioni testati con coagulo di sangue, i valori di PAS misurati in condizioni statiche sono notevolmente inferiori rispetto a quelli ottenuti in condizioni dinamiche. In questo caso l’attivazione data dai coaguli di WB si può correlare all’introduzione di effetti convettivi. Esperimenti in condizione dinamica in presenza di VAD L’effetto del coagulo sull’attivazione piastrinica, mentre risulta evidente per il PRP, non è tale per gli esperimenti eseguiti con i coaguli di WB (Fig 0.5.). Control1 e Conrol2 risultano diversi a 30 min e 60 min, suggerendo un contributo dato dalla mesh sull’attivazione. Si conferma l’attivazione dovuta alla presenza del trombo. Non si osserva una saturazione del fenomeno di attivazione probabilmente a causa del maggiore volume di GFP e, quindi, del maggior numero di piastrine che in questo caso interfacciano il coagulo. Fig 0.5.: Platelet Activity State (PAS) per i test dinamici eseguiti con HA5 LVAD (media e dev. St.). *p<0.05. **p≤0.1 Le differenze statisticamente significative con il Control1 sono indicate in blu mentre le differenze statisticamente significative con il Control2 sono indicate in nero. Discussione Esperimenti in condizione statica Come osservato nella sezione precedente, i valori di PAS per campioni testati con WB suggeriscono un basso livello di attivazione piastrinica e sono in contrasto con le immagini SEM che mostrano, invece, piastrine attivate. I coaguli di WB, essendo asciutti, hanno probabilmente causato solo l’attivazione delle piastrine situate in prossimità del coagulo. La fase di miscelazione della provetta, eseguita prima del prelievo di ogni campione si rivela probabilmente non sufficiente ad ottenere un miscelamento uniforme delle piastrine nell’intero volume contenuto in provetta. Per le piastrine messe a contatto con i coaguli di PRP, invece, i risultati mostrano che l’attivazione è proporzionale al volume di trombo contenuto in provetta. La differenza morfologica tra i due tipi di trombo (trombi rossi secchi e trombi bianchi umidi) è considerata il motivo per cui i valori di PAS relativi ai coaguli di WB sono simili ai controlli mentre i valori di PAS relativi ai coaguli di PRP sono statisticamente diversi da entrambi i controlli. In questo ultimo caso, infatti, il numero di piastrine a contatto con il trombo è notevolmente maggiore rispetto al caso del trombo di WB. Conseguentemente, visto che il GFP si miscela meglio con il coagulo, l’attivazione piastrinica è maggiore ed aumenta in relazione al volume di coagulo utilizzato per il test corrispondentemente al maggiore numero di piastrine che interfacciano con esso. La trombina è considerata il principale agonista che porta all’attivazione piastrinica valutata in questo studio. Essa potrebbe infatti essere ancora espressa sulla rete di fibrina dei coaguli o potrebbe essere generata dal Tissue Factor (TF) il quale è contenuto, seppure in piccola parte, nel flusso sanguigno. La sequenza di eventi che porta all’attivazione delle piastrine si attiva appena le piastrine entrano in contatto con la trombina. Esperimenti in condizione dinamica I risultati ottenuti in condizioni dinamiche confermano il verificarsi del fenomeno descritto per gli esperimenti statici. Infatti, nella maggior parte dei casi, i valori di PAS differiscono da entrambi i controlli e ciò dimostra l’effetto procoagulante del trombo sulle piastrine. L’incremento iniziale di attivazione può essere letto come una conferma sull’immediatezza del fenomeno: si suppone infatti che l’attivazione si verifichi appena le piastrine entrano in contatto con il trombo. In ogni caso, l’alto numero di variabili che incidono sul fenomeno e la complessa, imprevedibile e non sempre ripetibile dinamica degli eventi nel circuito ne rendono difficile la comprensione di tutti gli aspetti. Simili valutazioni possono anche essere fatte confrontando i dati ottenuti da campioni testati con trombi rossi e bianchi. I valori di PAS risultano simili ad ogni istante di tempo per i due casi. È probabile che le piastrine, in condizioni dinamiche, interagiscano più facilmente con il coagulo di WB, anche se asciutto, e quindi non si osserva, su di esse, la notevole differenza di impatto tra i coaguli di WB e di PRP riportata per gli esperimenti statici. L’esatta dinamica degli eventi in atto durante l’esperimento è però difficile da comprendere. Il confronto tra i risultati ottenuti alle due velocità suggerisce che l’attivazione da contatto avviene indipendentemente dalla velocità a cui vengono effettuati i test. Quindi l’introduzione di fenomeni convettivi a bassa velocità è sufficiente a saturare il fenomeno e l’incremento di questi effetti non induce un’ulteriore attivazione. Esperimenti in condizione dinamica in presenza di VAD I risultati ottenuti confermano il generale effetto sull’attivazione causata dal trombo e mostrano valori di PAS differenti per i due controlli utilizzati. La mesh potrebbe causare un incremento di attivazione per due principali motivi: alterazione della fluidodinamica del flusso in prossimità della mesh o effetti del materiale della mesh sulle piastrine. D’altra parte però i valori di PAS misurati per i campioni testati risultano statisticamente maggiori rispetto ad entrambi i controlli. L’attivazione delle piastrine si verifica quindi indipendentemente dalla presenza della mesh. Conclusioni Il presente progetto pone l’attenzione sul ruolo delle piastrine nell’incrementare ulteriormente il fenomeno della trombosi, quando essa è già in atto. La dimostrazione dell’avvenuta attivazione delle cellule dovuta alla presenza di un trombo è importante per capire la dinamica della trombosi. La tesi quindi prova che la trombosi relativa all’impianto di un VAD è un fenomeno auto amplificante. Esso infatti porta all’attivazione piastrinica che, a sua volta, induce un incremento della stessa trombosi.
Prothrombotic effects of preexisting thrombosis in continuous flow ventricular assist devices
SARNO, GABRIELLA
2015/2016
Abstract
Abstract Introduction Heart failure is a complex and progressive cardiac pathology characterized by structural or functional deficiencies, which determine the inability of the heart to properly eject blood into the circulatory system. In the United States, about 650,000 new cases are diagnosed every year with a 50% of probability of death in the 5 years. Heart failure can affect the left or the right side of the heart (left or right ventricular heart failure). It can be systolic, meaning that the ventricle does not contract normally, or diastolic, when the ventricle does not relax normally. At first, this pathological condition can be managed through lifestyle changes or drugs. Nevertheless, as heart failure worsens medical and surgical procedures may be necessary. Heart transplant is considered the best therapy to treat the pathology but, because of the lack of heart donors, this solution is often not achievable. For this reason, in recent decades, ventricular assist devices (VADS) have been developed and used as bridge to transplant (BTT) or as destination therapy (DT). VADs are battery operated, mechanical pump-type devices surgically implanted. They can be used as a support for the left ventricle (LVAD), the right ventricle (RVAD) or they can assist both ventricles (BiVAD). Although their efficacy in guarantying survival and a decent quality of life for patients, their use implies risks and complications such as, haemorrhage, infection, device malfunction, acute right ventricular failure and thrombosis. Thrombosis is considered the most frequent and life threatening risk related to the use of a VAD. It consists in the development of thrombus loads within any component of the device. These clot may cause locally modified fluid dynamics, they may detach from the original site leading to thrombo-embolic events, they may affect platelets causing their activation and the amplification of the thrombotic phenomenon itself. The better understand the effect of thrombosis on platelet activation is the main interest of the present project. Platelets, the clotting cellular factor, are disc-shaped non-nucleated cells. They take part in the processes which lead to thrombus formation. In fact, chemical and mechanical stimulations of platelets lead to the phenomenon of platelet adhesion, activation and aggregation, which are fundamental for coagulation and thrombus formation. The effect on platelets of pre-existing thrombosis consequent to VAD implantation has not clearly been evaluated. The aim of the present project is to evaluate if VAD-related thrombosis acts as an adjuvant for further platelet activation amplifying, thus, the thrombotic phenomenon itself. State of the Art Pump thrombosis has been widely diagnosed, observed in vivo and reported in literature. It normally develops is an acute way and it is often unpredictable. Therefore, it can be deduced that the phenomenon occurs in a short period of time and this may be related to the fact that a thrombus load may be a powerful platelet activator and, thus, amplify the phenomenon of thrombosis. To quantify the effect induced by the presence of a thrombus load on platelet activation, the Platelet Activity State (PAS) assay, which has been prevalently used to evaluate shear stress-related platelet activation, has been chosen. It allows the 1:1 correlation between the stimulus induced on platelets by the agonist and the output of the test. Platelet activation may also be a result of the presence of an interface between platelets and an exogenous material. The contact-related platelet activation is probably the phenomenon occurring in the conditions tested for this project. In fact, platelets interfacing a thrombus load become activated as a result of the contact between the two parts. Materials and Methods To evaluate the effect of preexisting thrombosis on platelet activation, platelets are interfaced with thrombus loads, both red (mainly consisting in red blood cells) and white (mainly consisting in red platelets). Platelet activation induced by the presence of thrombi is then measured through Platelet Activity State (PAS) assay. To execute the experiments, blood is drawn from healthy donors, Platetet Rich Plasma (PRP) is obtained by blood centrifugation and Gel Filtrated Platelet (GFP) is obtained by gel-filtration of PRP. Part of whole blood (WB) and PRP is preserved to create red and white thrombi. Experiments are executed both in static and dynamic conditions to evaluate the effect of convective phenomena, which are very relevant in vivo. Dynamic tests are executed in absence and in presence of a VAD. Static conditions experiments Whole blood is inserted at the base of round bottom tubes with volumes equal to 15 µl, 30µl, 60µl and 120µl. The same procedure is followed with PRP added with CaCl2. After the incubation phase which is necessary to allow clot formation, 4 ml of GFP solution are pipetted on the top of each clot. PAS assay is performed at 1min, 10min and 30min since the beginning of the test. In addition, few samples are collected and prepare for SEM image acquisition. Both for red and white thrombus, a negative control test is executed by adding 4ml of GFP solution to 120µl of Platelet Buffer. For white thrombus load, a further negative control is executed by adding 4ml of GFP solution to 120µl of PRP not added with CaCl2 and, therefore, not able to clot. Dynamic conditions experiments Dynamic tests are performed to evaluate platelet activation in presence of convective phenomena. To perform this type of tests a hydraulic circuit has been built. It is a closed loop composed of a peristaltic pump, a pump inset and a circuit tube Tests are performed at two flow rate conditions, corresponding to two set velocities for the pump, 40rpm and 200rpm. These values are sufficient to generate convective effects but contained shear stresses in order not to obtain shear-related platelet activation. In order to introduce the presence of a thrombus inside the hydraulic circuit, the clot is prepared on top of a solid metallic frame that is then placed in a fixed location in the circuit tube (MESH experiment). The circuit is filled with GFP solution (about 10ml) and PAS assay is executed on samples collected at 1min, 10min and 30min. For dynamic tests two negative controls are performed by measuring PAS for GFP solution flowing in the circuit at the considered flow rate and for GFP solution at 0rpm. Dynamic conditions experiments in presence of a Ventricular Assist Devices A preliminary study has been additionally performed by exposing platelets both to the presence of a preformed red or white thrombus load and to shear stress due to the action of the VAD. Due to planning differences between this experimental test and the previous two, this experiment is considered not comparable to the others. WB and PRP thrombus loads of 120µl of volume, are inserted in a circuit with capacity of about 100ml. The close loop is filled with GFP solution and kept at 37°. The VAD is activated at physiological operating velocity of 9,600rpm and PAS values are measured at 1min, 10min, 30min, 60min and 120min since pump activation. For both red and white thrombus, two negative control tests are performed by measuring PAS for GFP solution flowing in the circuit at the considered flow rate in absence of the mesh or interfacing a clean one. Results For all the executed tests, red and white thrombus loads appear to be morphologically different. WB clots appear to be dry, whereas PRP clots appear damp. Static conditions experiments Activation data for samples interfaced with WB thrombus loads are statistically similar to the values of the negative controls (Fig 0.1). Images acquired by SEM, instead, show activated platelets even at the beginning of the experiment. Fig 0.1.: Platelet Activity State (PAS) due to the presence of WB thrombus load interfacing platelets (Mean and St.Dev). The legend indicates the amounts of clot volume and control solution (Plt buffer) to which 4ml of GFP are added. N experiments = 4 from different donors. *p<0.05. PAS results obtained for samples been in contact with PRP clots show a relevant activation for platelets. PAS values for the tested samples are different from both the control tests and proportional to the volume of clot inserted into the tube (Fig. 0.2.). The activation phenomenon seems to saturate at the beginning of the experiment and, in fact, there are not relevant differences between PAS values for the same samples at different time points. Fig 0.2.: Platelet Activity State (PAS) due to the presence of PRP thrombus load interfacing platelets (Mean and St.Dev). The legend indicates the amounts of clot volume and control solutions (Plt buffer and PRP not added with CaCl2) to which 4ml of GFP are added. N experiments = 6 from different donors. *p<0.05. Differences statistically relevant with Control1 are in blue and differences statistically relevant with Control2 are in black. Dynamic conditions experiments For a set velocity of 40rpm for the pump, PAS values result to be different from both the controls; tests executed with WB and PRP clots do not show statistical differences at any time point. The phenomenon is quicker at the beginning of the experiment with just a slight increment over time (Fig. 0.3.). For a set velocity of 200rpm for the pump (Fig 0.4), PAS values result to be generally similar to the one obtained at lower velocity. In fact, the effect on activation of the thrombus is confirmed and no statistical difference is observed between samples tested with WB and PRP clots. Fig 0.3.: Platelet Activity State (PAS) for the dynamic test at 40rpm (Mean and St.Dev). *p<0.05. Differences statistically relevant with Control1 are in blue and differences statistically relevant with Control2 are in black. Fig 0.4.: Platelet Activity State (PAS) for the dynamic test at 200rpm (Mean and St.Dev). *p<0.05. Statistically relevant differences with Control1 are in blue and statistically relevant differences with Control2 are in black. The comparison between data obtained for tests at the two velocities shows similar numerical values of platelet activation. Therefore, this result suggests that the introduction of convective effects at low velocities is sufficient to saturate the phenomenon. In fact the increase in convective effects introduced at 200rpm does not lead to further activation for platelets. Data obtained for red thrombus load through dynamic tests show really different behaviour with respect to static tests. In this case, in fact, WB clots prove to activate platelets and this result is probably related to the introduction of convective effects in dynamic experiments. Dynamic conditions experiments in presence of a Ventricular Assist Devices The effect of the clot on platelet activation results evident in case of PRP while for experiments executed with WB thrombus loads platelet activation has not been observed (Fig 0.5.). Control1 and Control2 seem to be different at 30min and at 60min, suggesting platelet activation over time due to the mesh. The activation given by the presence of the thrombus is confirmed over time, the PAS of the samples been in contact with the PRP mesh differs (with p-value not higher than 0.1) from Control1 and Control2 at various time points, especially after long time since pump activation. A saturation of the phenomenon has not been observed, probably because of the higher volume of GFP and thus, the higher number of platelets which, in this case, interface the clot. Fig 0.5.: Platelet Activity State (PAS) for dynamic test with HA5 LVAD (Mean and St.Dev). *p<0.05. **p≤0.1 Statistically relevant differences with Control1 are in blue and statistically relevant differences with Control2 are in black. Discussions Static conditions experiments As observed in the previous section, PAS values for samples been in contact with WB suggested a low activation of platelets, while the correspondent SEM images showed activated cells. WB clots, being dry and attached to the tube surface in static conditions, have probably implied activation just for platelets located at the interface between the GFP solution and the clot or, anyway, very close to the clot. The mixing phase executed right before every collection of the platelet sample (so at 1min, 10 min and 30min) was probably not sufficient to achieve a uniform mixing of platelets in the entire volume contained in the tube. Results have shown that a PRP thrombus load causes platelets to activate in a way directly proportional to the amount of clot contained in the corresponding round bottom tube. In fact, the higher is the volume of the thrombus, the more are the activated platelets. The morphological difference between the two typologies of thrombus, WB clots are dry and PRP clots are damp, can be considered as the reason why PAS results for red thrombi are similar to the control results while PAS results for white thrombi are, for high volumes of clot, statistically different from both the considered control samples. In presence of white thrombus load, in fact, GFP solution is probably easily mixed with the clot. Therefore, there is a high number of platelets which get in contact with the thrombus and platelets get activated more easily in case of white thrombus than with red thrombus. As a consequence, platelet activation increases as GFP interfaces with a higher amount of clot because the higher is the volume of the clot, the higher is the number of platelets interfacing with it and, thus, activating. Thrombin is considered to be the main agonist for the activation of platelets. In the tests considered for this project, thrombin may still be expressed on the fibrin net of the thrombi or it may be generated by the TF which flows, in a small part, in blood. As platelets get in contact with thrombin, a sequence of events occurs leading to activation of platelets. Dynamic conditions experiments PAS data for dynamic conditions experiments confirm the phenomenon described for static test results. In fact, in the majority of cases, PAS data for tested samples differ significantly from both the control samples. This difference demonstrates the procoagulant effect of the thrombus on platelets. Results, showing a relevant rate especially at the beginning of the test, can be read as a confirmation of the immediacy of the phenomenon: platelet activation occurs as platelets get in contact with the thrombus. However, unfortunately, it is not possible to explain all the aspects of the phenomenon because of the high number of variables taking part in it and because of the complex, unpredictable and not always repeatable dynamic of the events happening in the circuit as the experiment begins. Similar evaluations can be made about the comparison between samples tested with WB and PRP clots. The PAS values result to be similar in the two cases at each time point. The relevant difference between the PAS results related to the two type of thrombus described for the static test is not visible for the dynamic one. It is likely that platelets in the dynamic test, being able to flow in the loop, get easily in contact with both PRP and WB thrombus load, even if the latter is dry. However, it is difficult to assert the exact dynamic of what happens to a dry and a damp clot being washed by a platelet solution at various velocities. By comparing results obtained for samples tested at both the velocities, it can be said that the presence of a thrombus load, both red and white, interfacing the platelets implies an increase in platelet activation independently on the velocity at which they are flowing. Therefore, the introduction of convective effects at low velocity is sufficient to saturate the phenomenon and the increment in velocity and in convection does not induce further activation. Dynamic conditions experiments in presence of a Ventricular Assist Devices PAS results confirm the overall hypothesis of increase in platelet activation due to the presence of a thrombus load interfacing platelets and they also show, at the end of the test, differences between the two controls. The mesh may cause further platelet activation for two main reasons: fluid dynamic effects due to the presence of the mesh or effects of the mesh material on platelets. As statistically relevant difference and difference with a significance level not higher than 0.1 are observed between PAS values of these two samples at all the other time points, it can be affirmed that the thrombus load do cause activation for platelets independently on the presence of the stainless steel mesh. Conclusions The present project focused on the relevant role of platelets in incrementing thrombosis, once thrombosis is already occurring. The demonstrated activation of cells due to their contact with a thrombus load is important to understand the dynamic of the thrombotic phenomenon. The thesis thus proved that VAD-related thrombosis is an amplifying phenomenon, as it leads to activation of platelets which, in turn, induce the development of thrombosis itself.| File | Dimensione | Formato | |
|---|---|---|---|
|
2016_7_Sarno.pdf
Open Access dal 13/07/2017
Descrizione: Testo della Tesi
Dimensione
2.66 MB
Formato
Adobe PDF
|
2.66 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/123061