Vacuum switching devices have become the standard interruption system for medium voltage applications due to their many advantages. Contacts are designed in order to self generate axial or transverse magnetic field by the current growing inside them and few solutions of mixed TMF-AMF mixed contacts have been proposed. Since the magnetic field used in vacuum interrupters for arc controlling depends on the arc current, it is not possible to control the amplitude of the TMF nor of the AMF. The goal of this work is to determine the influence of an external controllable axial magnetic field to an electric arc between two TMF contacts. An experimental campaign has been conducted with currents between 4 and 24kA: the arc is developed in a demountable vacuum chamber and recorded by means of a high speed CCD camera. The images are correlated with current and voltage waveforms in order to evaluate arc mode and behaviours. The Helmholtz coils used during the experiments could provide axial magnetic field in 6 discrete steps between 0 and 110mT. Calculations show that the TMF can reach a magnitude up to 1.7 T in the contacts gap, with an arc current of 20kA; Even though the maximum AMF applied in our experiments is 0.11 T, the influence of external AMF can be considered remarkable. Moreover, a relationship between the constricted arc current and the force applied to the arc model has been found to be F = k * e^0,15x, in which k is a constant and x is the arc current. Experimental results shows how an external AMF strongly reduces the arc voltage during the whole interruption. The reduction is more significant with lower arc current, in fact, 110mT are able to reduce the arc voltage by 2/3 if the current is 12kA and by 1/3 if the arc current is 20kA, with respect to the case without AMF. TMF contacts are designed to have the arc root move during the interruption but if an external axial magnetic field is applied, this strongly influences the arc speed: it has been found that, if AMF is greater than 56mT for 12kA and 74mT for 16 kA, the arc root will stand still in the point of ignition, while for 20kA the arc root is always moving even with an applied AMF of 110mT. The arcing voltage was found to be much less depended on magnetic fields, arc current or arcing time. Its average value has been evaluated in 24.7 V with a standard deviation of 3.8 V. According to waveforms, high speed pictures and the energetic analysis, an external AMF component of 74 mT was found to minimize the arc energy in the range of 4 to 20kA, having an arc that is still free to run along the TMF contacts. Moreover, with 74mT, the arc voltage is also minimized with differences between -4% to -47% for each arc current, with an average reduction of -28.6%
Gli interruttori in vuoto sono divenuti lo standard per le applicazioni in media tensione grazie ai loro numerosi vantaggi. I contatti sono progettati per generare un campo magnetico assiale o trasversale creato dalla corrente che li attraversa ed esistono varie soluzioni di contatti misti AMF-TMF. Siccome il campo magnetico usato negli interruttori a vuoto per il controllo dell'arco dipende dalla corrente durante l'apertura, non è possibile controllare l'ampiezza del campo magnetico trasversale o assiale. Lo scopo di questa tesi è determinare l'influenza di un campo magnetico assiale esterno e controllabile su un arco elettrico tra due contatti di tipo TMF durante l'apertura. Allo scopo sono state condotte prove sperimentali di interruzione con correnti tra 4 e 24 kA, l'arco si sviluppa in una camera a vuoto e viene ripreso da una videocamera CCD ad alta velocità; Le immagini sono correlate con le forme d'onda di corrente e tensione per poter valutare la tipologia d'arco ed il suo comportamento. Le bobine di Helmholtz utilizzate durante gli esperimenti sono in grado di fornire un campo magnetico assiale in 6 passi discreti da 0 a 110mT. Dai calcoli risulta che il TMF può raggiungere ampiezze di 1.7 T nello spazio tra i contatti, con una corrente d'arco di 20kA; nonostante il massimo AMF applicabile negli esperimenti fosse 0.11 T, l'influenza del campo magnetico esterno è notevole. Inoltre, tra il modello dell'arco utilizzato e la forza applicata allo stesso si è potuta stabilire una relazione: F = k *e^0,15x, in cui k è una costante e x è la corrente d'arco. I risultati sperimentali mostrano che un AMF esterno riduce fortemente la tensione d'arco durante l'intero processo di interruzione. La riduzione è più significativa a basse correnti, infatti, 110mT sono in grado di ridurre la tensione d'arco di 2/3 se la corrente è 12kA e di 1/3 se la corrente è 20kA, con riferimento all'assenza di AMF. I contatti di tipo TMF sono progettati per archi elettrici che si muovono sulla superficie degli stessi ma l'applicazione di un campo elettrico assiale esterno ne influenza la velocità: è stato provato che, se maggiore di 56mT per 12kA e 74mT per 16kA, l'arco resta fermo nel punto di accensione, mentre per 20kA l'arco rimane mobile anche con un AMF di 110mT. La tensione d'accensione è risultata essere molto meno dipendente da campi magnetici, ampiezza di corrente e tempo d'arco. Il suo valore medio è stato valutato in 24.7V con una deviazione standard di 3.8V In base alle forme d'onda, alle riprese ad alta velocità e all'analisi energetica, un AMF esterno di 74mT è risultato minimizzare l'energia d'arco tra 4kA a 20kA, mantenendo l'arco libero di muoversi sui contatti TMF. Inoltre, con 74mT, la tensione d'arco è minimizzata con una differenza compresa tra -4% e -47% per ogni corrente, con una riduzione media di 28,6%.
Experimental study of vacuum arc under controllable axial magnetic field
FERRARI, STEFANO
2015/2016
Abstract
Vacuum switching devices have become the standard interruption system for medium voltage applications due to their many advantages. Contacts are designed in order to self generate axial or transverse magnetic field by the current growing inside them and few solutions of mixed TMF-AMF mixed contacts have been proposed. Since the magnetic field used in vacuum interrupters for arc controlling depends on the arc current, it is not possible to control the amplitude of the TMF nor of the AMF. The goal of this work is to determine the influence of an external controllable axial magnetic field to an electric arc between two TMF contacts. An experimental campaign has been conducted with currents between 4 and 24kA: the arc is developed in a demountable vacuum chamber and recorded by means of a high speed CCD camera. The images are correlated with current and voltage waveforms in order to evaluate arc mode and behaviours. The Helmholtz coils used during the experiments could provide axial magnetic field in 6 discrete steps between 0 and 110mT. Calculations show that the TMF can reach a magnitude up to 1.7 T in the contacts gap, with an arc current of 20kA; Even though the maximum AMF applied in our experiments is 0.11 T, the influence of external AMF can be considered remarkable. Moreover, a relationship between the constricted arc current and the force applied to the arc model has been found to be F = k * e^0,15x, in which k is a constant and x is the arc current. Experimental results shows how an external AMF strongly reduces the arc voltage during the whole interruption. The reduction is more significant with lower arc current, in fact, 110mT are able to reduce the arc voltage by 2/3 if the current is 12kA and by 1/3 if the arc current is 20kA, with respect to the case without AMF. TMF contacts are designed to have the arc root move during the interruption but if an external axial magnetic field is applied, this strongly influences the arc speed: it has been found that, if AMF is greater than 56mT for 12kA and 74mT for 16 kA, the arc root will stand still in the point of ignition, while for 20kA the arc root is always moving even with an applied AMF of 110mT. The arcing voltage was found to be much less depended on magnetic fields, arc current or arcing time. Its average value has been evaluated in 24.7 V with a standard deviation of 3.8 V. According to waveforms, high speed pictures and the energetic analysis, an external AMF component of 74 mT was found to minimize the arc energy in the range of 4 to 20kA, having an arc that is still free to run along the TMF contacts. Moreover, with 74mT, the arc voltage is also minimized with differences between -4% to -47% for each arc current, with an average reduction of -28.6%| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi_ITALIANA.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
11.42 MB
Formato
Adobe PDF
|
11.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/123424