This thesis shows an analytic, numerical and experimental investigation about the behavior of a rotary vane pump, in order to design a prototype that is intended to be employed in an Organic Rankine Cycle. The resulting model has been used to develop a computing engine that in turn has been implemented in an executable software, by which it has been possible to vault the influence of several design parameters, such as rotor diameter, eccentricity, rotor length and number of blades, affecting the performances and the mechanical strength of a rotary vane pump. The results of the study done by using this tool, checked with a Finite Element Analysis model, have led to the sizing of a physical prototype supported by bimetal bushings, with a 40 mm rotor diameter and a 1,4 mm eccentricity, which has been subsequently analyzed on a test bench. The data acquired have shown the benefits of using a bushings feed system that takes the portion of working fluid used as lubricant at the outtake and returns it to the primary flow at the closed vane. In particular they have been observed an increase in flow rate up to 91,6% and an increase in efficiency up to 11,8%, both at 20 bar. It has been noticed also a strong relationship between flow rate losses and working temperature of the fluid at the intake, due to its changing in dynamics properties. The experimental investigation has proceeded focusing on the performances of the prototype using a polymeric set of vanes instead of the original cast iron one. In this configuration, the prototype has shown a better global efficiency (up to +2,4% at 5 bar) limited to cold fluid conditions (20°C), whereas with the working fluid in hot conditions (55°C) the benefits given by a reduction of leakage losses are balanced by an increase in mechanical power demand. Finally, the experimental tests have allowed the validation of the analytic model developed and consequently of the numerical one, highlighting a mean relative error about the mechanical power demand of 3,3%. As regards the estimation of the flow rate, the mean relative error depends on the temperature of the fluid and is equal to 4,3% for fluid at 20°C and 5,5% for fluid at 55°C.
Questa tesi tratta l’indagine analitica, numerica e sperimentale di una pompa a palette al fine di progettare di un prototipo per l’applicazione in un motore a fluido organico. Sulla base del modello realizzato è stato compilato un codice di calcolo che è stato in seguito implementato in un applicativo in formato eseguibile. Per mezzo di esso è stato condotto uno studio dell’influenza di parametri progettuali quali i diametri di rotore e statore, la lunghezza del rotore ed il numero di palette, sulle prestazioni e sul comportamento strutturale di una pompa a palette. E’ stato possibile dimensionare un prototipo supportato da bronzine bimetalliche con rotore di diametro 40 mm ed eccentricità di 1,4 mm, il quale, dopo essere stato verificato mediante il metodo degli elementi finiti, è stato fisicamente realizzato ed analizzato attraverso un apparato sperimentale. Dai dati acquisiti si sono osservati gli effetti benefici sulla portata volumetrica e sul rendimento globale dell’utilizzo di un circuito di alimentazione dei supporti che prelevi il fluido operativo presso la sezione di mandata e che lo restituisca al flusso primario in corrispondenza del vano chiuso, alternativo al tradizionale circuito mandata-aspirazione (rispettivamente fino al 91,6% e all’11,8% in più, con carico di 20 bar). Si è determinata anche una correlazione tra portata e temperatura del fluido operativo, ed in particolare si è ricondotto tale legame alla variazione delle proprietà fluidodinamiche di quest’ultimo. Lo studio si è poi rivolto alla valutazione delle prestazioni del prototipo installando palette in PEEK in luogo delle tradizionali palette in ghisa; in questo senso si è osservato un miglioramento nel rendimento globale (fino al 2,4% in più con carico di 5 bar), limitato però al funzionamento con fluido freddo. La campagna sperimentale ha infine validato il modello redatto, sul cui calcolo della potenza meccanica richiesta dalla pompa si è riscontrato un errore relativo medio del 3,3%, mentre circa la stima della portata l’errore relativo commesso è variabile in funzione della temperatura del fluido, ed è pari in media al 4,3% e al 5,5% riferendosi rispettivamente a 20°C e a 55°C.
Sviluppo, realizzazione e sperimentazione di una pompa rotativa a palette per l'applicazione in motori a fluido organico
LAZZARI, SIMONE
2015/2016
Abstract
This thesis shows an analytic, numerical and experimental investigation about the behavior of a rotary vane pump, in order to design a prototype that is intended to be employed in an Organic Rankine Cycle. The resulting model has been used to develop a computing engine that in turn has been implemented in an executable software, by which it has been possible to vault the influence of several design parameters, such as rotor diameter, eccentricity, rotor length and number of blades, affecting the performances and the mechanical strength of a rotary vane pump. The results of the study done by using this tool, checked with a Finite Element Analysis model, have led to the sizing of a physical prototype supported by bimetal bushings, with a 40 mm rotor diameter and a 1,4 mm eccentricity, which has been subsequently analyzed on a test bench. The data acquired have shown the benefits of using a bushings feed system that takes the portion of working fluid used as lubricant at the outtake and returns it to the primary flow at the closed vane. In particular they have been observed an increase in flow rate up to 91,6% and an increase in efficiency up to 11,8%, both at 20 bar. It has been noticed also a strong relationship between flow rate losses and working temperature of the fluid at the intake, due to its changing in dynamics properties. The experimental investigation has proceeded focusing on the performances of the prototype using a polymeric set of vanes instead of the original cast iron one. In this configuration, the prototype has shown a better global efficiency (up to +2,4% at 5 bar) limited to cold fluid conditions (20°C), whereas with the working fluid in hot conditions (55°C) the benefits given by a reduction of leakage losses are balanced by an increase in mechanical power demand. Finally, the experimental tests have allowed the validation of the analytic model developed and consequently of the numerical one, highlighting a mean relative error about the mechanical power demand of 3,3%. As regards the estimation of the flow rate, the mean relative error depends on the temperature of the fluid and is equal to 4,3% for fluid at 20°C and 5,5% for fluid at 55°C.File | Dimensione | Formato | |
---|---|---|---|
Simone_Lazzari_823051.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
5.57 MB
Formato
Adobe PDF
|
5.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/123832