Spinal cord injury (SCI) is a highly debilitating disease due to severe disability that follows. Usually these injuries are the result of traumatic events, such as car accidents or sports injuries, but may also result from non-traumatic causes such as infections or in relation to the presence of a tumoral mass. This pathology is the leading causes of disability in Italy. Currently, there is no effective strategy for the treatment of SCI: immobilizing and bracing to stabilize the spine, can best help to minimize the damage. SCI involves different kinds of damage to different types of cells; immune cells flow in, toxic substances are released and a scar is formed, which generates permanent interruption of information. Microglia, glial cells with immune role in the central nervous system (CNS) have a crucial role during the inflammatory response. These cells, when activated, can assume two different phenotypes, called M1 and M2, which are characterized by having, respectively, a cytotoxic and a neurotropic effect. The modulation of the phenotype from M1 to M2 can therefore be a strategy and innovative therapy to promote the protective action and inhibite the destructive one. Last decades studies suggest that nanogel can be employed like efficient carrier for controlled drug release. Nanogels are 3-D polymeric networks able to increase drug half-life with improving in efficiency. Furthermore, these systems are versatile, hydrophilic and might be targeted to a desired situ. In this work it has been performed two different strategies that aspire to modulate inflammatory response in SCI. The first one studies how guarantee a selective nanogels internalization by target cells. Nanogels, in fact, have to relate in different way with cells, for example drugs have to been uptaken by microglia in same application but in others have to be no intercept. The second one focus on controlling drug release under the influence of biological stimuli by intra and extracellular environment and optimizing it in inflammatory contest. Both strategies are based on functionalization of two polymers used in our nanogels formulation, polyethylene glicole (PEG) and polyethylene immine (PEI). To permit selectivity between nanogels and microglia it has been performed different coating for the nanosystem. These have been applied to the same standard formulation of PEG-PEI nanogels, where polymer matrix is conjugated to a chromophore, Rhodamine B base, to guarantee traceability of the system during in vitro studies. These ones make possible introducing functionalized group on nanogels surface with consequent different interaction with cellular membrane. Three different system have been developed: 1. Polyethylene glycol methyl ether 5000 (mPEG) has been functionalized with CDI to introduce imidazole component and perform a link with nanogels bulk. 2. mPEG has been functionalized with succinic anhydride in order to obtain carboxyl group and perform a link with nanogels. 3. 3-(dimethylammino) -1- propanol has been functionalized with CDI. This compound insert a nucleophilic site on the nanogel surface. To act over kinetic of drug release, two different studies have been performed. In the first one, it has been evaluated the possibility of using nanogels PEG-PEI, without chemical modifications, as drug release systems based on electrostatic interactions between the polymer chains and the drug trapped inside. To achieve this object, the system has been exposed to different pH values in such a way as to obtain different level of ammine protonation of PEI component. As substitutes of drugs have been used drug mimetics: rhodamine B (Rh) and fluorescein (SF), characterized by having, respectively, one neutral charge and the other negative charge. In this way it has been possible to study different electrostatic interactions with the polymers considered and the resulting assessment of the drug release kinetics by simulating various physiological conditions. It is finally examined the effect of the counterion to evaluate how its nature affects the release of the drug. In the second one, it has been performed a stable linkage between rhodamine and nanogels bulk. In details it has been realize a disulphide bridge; this linkage resists in extracellular environment but in intracellular one is susceptible of glutathione (GSH) mediated reduction. Breaking of this linkage causes Rhodamine to be released. The size of the nanostructures and the surface charge have been analyzed using the dynamic light scattering measurement techniques (DLS) and the atomic force microscope (AFM). Chemical structures of the products are verified by NMR and IR spectroscopy analysis. In the end, it has been conducted a preliminary test of internalisation of nanostructures studied by the microglial cells and the results led to the conclusion that the proposed synthesis allow to produce thoroughly functionalized nanogel for the future realization of biocompatible systems for controlled drug release. Finally, biological results have been obtained thanks to the experiments in collaboration with the Mario Negri Institute for Pharmacological Research, that involve interaction between microglia and nanogels, monitoring their viability and the drug release.
La lesione del midollo spinale (LMS) rappresenta una patologia altamente invalidante a causa della grave disabilità che ne consegue. Solitamente tali lesioni sono il risultato di eventi traumatici, come incidenti stradali o infortuni sportivi, ma possono anche derivare da cause non traumatiche come infezioni o in relazione alla presenza di una massa tumorale. Tale patologia costituisce la prima causa di invalidità in Italia. Attualmente non esistono trattamenti in grado di riparare completamente un midollo spinale lesionato: l’immobilizzazione e il rinforzo per stabilizzare la colonna vertebrale, possono al più aiutare a ridurre al minimo i danni. LMS implica diversi tipi di danno a cellule differenti; le cellule del sistema immunitario vengono richiamate nel sito di danno, vengono rilasciate sostanze tossiche e si forma una cicatrice che genera la discontinuità permanente nella trasmissione di informazioni. Le microglia, cellule della glia con funzione di difesa immunitaria nel sistema nervoso centrale (SNC), hanno un ruolo determinante durante il progredire della fase infiammatoria. Una volta attivate, possono assumere due differenti fenotipi, denominati M1 e M2, caratterizzati dall’avere, rispettivamente, un’azione citotossica e una neurotropica. La modulazione del fenotipo da M1 a M2 può quindi rappresentare una strategia e terapia innovativa per promuovere l’azione tropica a dispetto di quella citotossica. Studi condotti nell’ultimo decennio hanno suggerito che i nanogeli possono essere impiegati come efficienti carrier per il rilascio controllato di farmaci. I nanogeli sono strutture polimeriche tridimensionali che permettono di prolungare l’emivita di un farmaco, permettendone quindi un’azione più efficace. Sono inoltre idrofili, versatili e se opportunamente funzionalizzati posso essere selettivi rispetto al target. In questo lavoro di tesi sono state sviluppate due diverse strategie che hanno come obiettivo quello di intervenire nella modulazione della risposta infiammatoria nelle lesioni traumatiche del midollo spinale. La prima strategia verte sulla preparazione di sistemi in grado di promuovere una interazione selettiva microglia-nanogeli con l’obiettivo che un farmaco possa svolgere la sua azione specifica esclusivamente entro la membrana cellulare delle microglia o che al contrario non venga intercettato da quest’ultime. La seconda verte sullo studio del profilo di rilascio del farmaco sotto effetto di stimoli provenienti dall’ambiente biologico intra o extracellulare. Entrambe le strategie si basano sulla funzionalizzazione dei polimeri usati per la sintesi dei nanogeli, polietilene glicole (PEG) e polietilene immina (PEI). Per promuovere la selettività di interazione tra nanogel e microglia sono state sviluppate diverse tipologie di rivestimento (coating) dei nanosistemi. Questi sono stati applicati a nanogeli PEG-PEI, dove la matrice polimerica è coniugata ad un cromoforo, la Rodamina B base, per garantire la tracciabilità del sistema nelle prove di interazione cellulare. Questi rivestimenti permettono di introdurre gruppi funzionali sulla superficie della struttura. Sono state sviluppate tre diverse tipologie di coating: 1. Funzionalizzazione di polyethylene glycol methyl ether 5000 (mPE) con 1,1’-carbonildiimidazolo (CDI) per introdurre la componente imidazolo, utile alla reazione di formazione di legame chimico con il nanogel. 2. Funzionalizzazione di mPEG con anidride succinica in modo da ottenere un gruppo carbossile con cui realizzare l’attacco al nanogel. 3. Funzionalizzazione di 3-(dimetilammino) -1- propanolo con CDI. Si inserisce un gruppo nucleofilo sulla superficie per valutarne l’interazione con le cellule. Lo studio della cinetica di rilascio si articola in due diversi studi. Nel primo caso, si è valutata la possibilità di rilascio di principio attivo, simulato da composti “farmaci mimetici”, da nanogeli PEG-PEI, senza modificazioni chimiche, ma sulla base di interazioni elettrostatiche tra le catene polimeriche e il farmaco intrappolato all’interno. Per raggiungere tale scopo il sistema è stato esposto a differenti valori di pH in modo tale da ottenere un diverso grado di protonazione del gruppo amminico del PEI. Come sostituti del farmaco sono stati impiegati i cromofori Fluoresceina (SF) e Rodamina B (Rh)). Questi sono caratterizzati dall’avere rispettivamente l’uno carica negativa e l’altro carica neutra; manifestano dunque una diversa interazione elettrostatica col nanogelo. È stato possibile condurre una valutazione dei profili di rilascio del farmaco simulando varie condizioni fisiologiche. Nell’analisi è stato infine studiato l'effetto del controione per valutare come la sua natura influenzi il rilascio del farmaco. Nel secondo caso si è agito realizzato un legame stabile tra la Rodamina, usata come farmaco mimetico, e la struttura del gel. Nel dettaglio è stato realizzato un ponte disolfuro; questo legame resiste all’ambiente extracellulare mentre in ambiente intracellulare è soggetto all’azione riducente del glutatione (GSH). A seguito della rottura del ponte disolfuro il farmaco viene rilasciato. Grazie a questa strategia è possibile realizzare un sistema in cui il rilascio non è più funzione della sola diffusione ma dipende dalla forza del legame. Le dimensioni delle nanostrutture e la carica superficiale sono state analizzate usando il light scattering dinamico (DLS) e il microscopio a forza atomica (AFM). Le strutture chimiche dei prodotti sono state verificate mediante spettroscopia NMR e analisi IR. Infine, è stata condotta una prova preliminare di internalizzazione delle nanostrutture studiate da parte delle cellule della microglia. I risultati ottenuti hanno permesso di programmare future prove con test in vivo. Per gli studi in vitro si ringrazia l’istituto di ricerche farmacologiche Mario Negri presso la cui sede sono stati condotti gli esperimenti.
Functionalization strategies of nanogels for selective drug delivery
RIGAMONTI, RICCARDO;CHINCARINI, GIULIA MARIA FOSCARINA
2015/2016
Abstract
Spinal cord injury (SCI) is a highly debilitating disease due to severe disability that follows. Usually these injuries are the result of traumatic events, such as car accidents or sports injuries, but may also result from non-traumatic causes such as infections or in relation to the presence of a tumoral mass. This pathology is the leading causes of disability in Italy. Currently, there is no effective strategy for the treatment of SCI: immobilizing and bracing to stabilize the spine, can best help to minimize the damage. SCI involves different kinds of damage to different types of cells; immune cells flow in, toxic substances are released and a scar is formed, which generates permanent interruption of information. Microglia, glial cells with immune role in the central nervous system (CNS) have a crucial role during the inflammatory response. These cells, when activated, can assume two different phenotypes, called M1 and M2, which are characterized by having, respectively, a cytotoxic and a neurotropic effect. The modulation of the phenotype from M1 to M2 can therefore be a strategy and innovative therapy to promote the protective action and inhibite the destructive one. Last decades studies suggest that nanogel can be employed like efficient carrier for controlled drug release. Nanogels are 3-D polymeric networks able to increase drug half-life with improving in efficiency. Furthermore, these systems are versatile, hydrophilic and might be targeted to a desired situ. In this work it has been performed two different strategies that aspire to modulate inflammatory response in SCI. The first one studies how guarantee a selective nanogels internalization by target cells. Nanogels, in fact, have to relate in different way with cells, for example drugs have to been uptaken by microglia in same application but in others have to be no intercept. The second one focus on controlling drug release under the influence of biological stimuli by intra and extracellular environment and optimizing it in inflammatory contest. Both strategies are based on functionalization of two polymers used in our nanogels formulation, polyethylene glicole (PEG) and polyethylene immine (PEI). To permit selectivity between nanogels and microglia it has been performed different coating for the nanosystem. These have been applied to the same standard formulation of PEG-PEI nanogels, where polymer matrix is conjugated to a chromophore, Rhodamine B base, to guarantee traceability of the system during in vitro studies. These ones make possible introducing functionalized group on nanogels surface with consequent different interaction with cellular membrane. Three different system have been developed: 1. Polyethylene glycol methyl ether 5000 (mPEG) has been functionalized with CDI to introduce imidazole component and perform a link with nanogels bulk. 2. mPEG has been functionalized with succinic anhydride in order to obtain carboxyl group and perform a link with nanogels. 3. 3-(dimethylammino) -1- propanol has been functionalized with CDI. This compound insert a nucleophilic site on the nanogel surface. To act over kinetic of drug release, two different studies have been performed. In the first one, it has been evaluated the possibility of using nanogels PEG-PEI, without chemical modifications, as drug release systems based on electrostatic interactions between the polymer chains and the drug trapped inside. To achieve this object, the system has been exposed to different pH values in such a way as to obtain different level of ammine protonation of PEI component. As substitutes of drugs have been used drug mimetics: rhodamine B (Rh) and fluorescein (SF), characterized by having, respectively, one neutral charge and the other negative charge. In this way it has been possible to study different electrostatic interactions with the polymers considered and the resulting assessment of the drug release kinetics by simulating various physiological conditions. It is finally examined the effect of the counterion to evaluate how its nature affects the release of the drug. In the second one, it has been performed a stable linkage between rhodamine and nanogels bulk. In details it has been realize a disulphide bridge; this linkage resists in extracellular environment but in intracellular one is susceptible of glutathione (GSH) mediated reduction. Breaking of this linkage causes Rhodamine to be released. The size of the nanostructures and the surface charge have been analyzed using the dynamic light scattering measurement techniques (DLS) and the atomic force microscope (AFM). Chemical structures of the products are verified by NMR and IR spectroscopy analysis. In the end, it has been conducted a preliminary test of internalisation of nanostructures studied by the microglial cells and the results led to the conclusion that the proposed synthesis allow to produce thoroughly functionalized nanogel for the future realization of biocompatible systems for controlled drug release. Finally, biological results have been obtained thanks to the experiments in collaboration with the Mario Negri Institute for Pharmacological Research, that involve interaction between microglia and nanogels, monitoring their viability and the drug release.File | Dimensione | Formato | |
---|---|---|---|
CHINCARINI G.M.F. - RIGAMONTI R..pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
11.49 MB
Formato
Adobe PDF
|
11.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/124042