Over the past years, extensive research efforts were made to improve roadside safety hardware to reduce injury to occupants for passenger vehicles and heavy trucks. Although some European Countries have lead significant research to address motorcycle riders’ safety when impacting roadside safety devices in sliding position, still very limited investigation has been conducted to address motorcycle riders’ safety when impacting roadside hardware in an upright position. Motorcycle accidents can lead to a high risk of severe injury for the rider and were found to be the leading source of fatalities in guardrail crashes. National standards exist for consideration when assessing roadside safety hardware impacted by passenger vehicles and trucks; full-scale crash testing is required to evaluate the crashworthiness of such roadside safety hardware and occupant risk values obtained during impacts with vehicles. Currently, no standards have been developed requiring crash testing of upright motorcycles impacting roadside barriers. Therefore, roadside barriers might be ideal to contain and safely re-direct vehicles, but they are currently not designed to be forgiving when impacted by upright motorcycles and their riders. There is a need to improve motorcyclist safety by designing and evaluating a more motorcycle-forgiving concept of roadside safety barrier, which could either prevent or limit riders’ injury severity during impact. While full-scale crash tests are necessary to ultimately evaluate the crashworthiness of a system, and any interaction between the system and the rider, they can also be very expensive. Finite element computer simulations are used to assist with the design of roadside safety hardware and with their crashworthiness evaluation. This work suggests a new “Motorcycle-Friendly” barrier concept: in the first part the new system is selected from a range of possible alternatives and its details are designed and modeled; in the second part vehicle models are introduced and, after conducting some FE analysis to investigate the robustness of the motorcycle model, numerical impact simulations against the proposed roadside barrier system are performed. The final purpose of this project is to show that the proposed design concept meets MASH impact performance requirements. Results could be used in future studies and a full-scale crash test will have to be performed to further evaluate barrier crashworthiness and any interaction between the ATD (rider) and the test article. The explicit finite element code LS-DYNA is used to perform impact simulations using the developed barrier model and the available vehicle models.
Negli ultimi anni, nell’ambito della sicurezza passiva, la ricerca si è concentrata sul miglioramento dei sistemi di ritenuta stradale al fine di ridurre il rischio di lesioni per gli occupanti di automobili e veicoli pesanti. Nonostante alcuni Paesi Europei abbiano attuato programmi con l’obiettivo di incrementare la sicurezza dei motociclisti in caso di impatto in posizione “sliding”, ancora nessuna contromisura è stata introdotta per arginare le problematiche relative ad un impatto in posizione upright. Un incidente motociclistico spesso implica un alto rischio di lesioni severe e rappresenta la maggiore causa di morte in incidenti che coinvolgono guardrail. I protocolli nazionali prevedono crash test con autoveicoli per valutare la crashworthiness della barriera e gli indici di rischio per gli occupanti del veicolo durante un impatto. Attualmente però non esistono normative che prescrivano crash test in cui un motociclo in posizione upright impatti il sistema di ritenuta stradale. Pertanto, le barriere stradali attualmente utilizzate potrebbero risultare ideali nel contenimento di autoveicoli ma non sono progettate sulla base di considerazioni riguardanti la sicurezza dei motociclisti. Per incrementare la sicurezza dei motociclisti e prevenire o limitare gli infortuni durante un impatto, nuove tipologie di barriere stradali dovrebbero essere progettate sulla base di considerazioni inerenti tale tipo di impatto. Nonostante essi siano molto costosi, full-scale test sono necessari per valutare in ultima istanza la crashworthiness della barriera e ogni interazione tra il sistema e il motociclista. Ampiamente utilizzati nel campo della sicurezza passiva, analisi agli Elementi Finiti rappresentano uno strumento più rapido (ed economico) e assistono i ricercatori nella progettazione e valutazione del comportamento ad impatto delle barriere stradali. Il presente lavoro di tesi propone lo studio di una barriera “Motorcycle-Friendly”: nella prima parte il concept ritenuto più idoneo è stato selezionato tra tutte le alternative concettuali proposte e i suoi dettagli costruttivi progettati e modellati; nella seconda parte, il modello ad elementi finiti della motocicletta è introdotto e, dopo aver condotto delle analisi numeriche con lo scopo di investigare la robustezza del modello, simulazioni di impatto con manichino sono eseguite. Infine, simulazioni di impatto con autoveicoli sono state effettuate per verificare che il sistema proposto soddisfi i requisiti prestazionali indicati in MASH. I risultati di tale ricerca potranno essere usati in futuri studi e full-scale test dovranno essere svolti per valutare sperimentalmente il comportamento della barriera e qualsiasi interazione tra l’ATD (motociclista) e il sistema proposto. Le simulazioni di impatto contro la barriera progettata sono state condotte con il codice esplicito per analisi agli elementi finiti LS-DYNA.
Design and assessment of a new roadside safety barrier system for consideration and mitigation of upright motorcycle impacts
DE FRANCO, ANTONIO
2015/2016
Abstract
Over the past years, extensive research efforts were made to improve roadside safety hardware to reduce injury to occupants for passenger vehicles and heavy trucks. Although some European Countries have lead significant research to address motorcycle riders’ safety when impacting roadside safety devices in sliding position, still very limited investigation has been conducted to address motorcycle riders’ safety when impacting roadside hardware in an upright position. Motorcycle accidents can lead to a high risk of severe injury for the rider and were found to be the leading source of fatalities in guardrail crashes. National standards exist for consideration when assessing roadside safety hardware impacted by passenger vehicles and trucks; full-scale crash testing is required to evaluate the crashworthiness of such roadside safety hardware and occupant risk values obtained during impacts with vehicles. Currently, no standards have been developed requiring crash testing of upright motorcycles impacting roadside barriers. Therefore, roadside barriers might be ideal to contain and safely re-direct vehicles, but they are currently not designed to be forgiving when impacted by upright motorcycles and their riders. There is a need to improve motorcyclist safety by designing and evaluating a more motorcycle-forgiving concept of roadside safety barrier, which could either prevent or limit riders’ injury severity during impact. While full-scale crash tests are necessary to ultimately evaluate the crashworthiness of a system, and any interaction between the system and the rider, they can also be very expensive. Finite element computer simulations are used to assist with the design of roadside safety hardware and with their crashworthiness evaluation. This work suggests a new “Motorcycle-Friendly” barrier concept: in the first part the new system is selected from a range of possible alternatives and its details are designed and modeled; in the second part vehicle models are introduced and, after conducting some FE analysis to investigate the robustness of the motorcycle model, numerical impact simulations against the proposed roadside barrier system are performed. The final purpose of this project is to show that the proposed design concept meets MASH impact performance requirements. Results could be used in future studies and a full-scale crash test will have to be performed to further evaluate barrier crashworthiness and any interaction between the ATD (rider) and the test article. The explicit finite element code LS-DYNA is used to perform impact simulations using the developed barrier model and the available vehicle models.File | Dimensione | Formato | |
---|---|---|---|
Thesis.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
53.65 MB
Formato
Adobe PDF
|
53.65 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/125441