In a constant effort to reduce carbon emissions and improve the environmentally friendly energy production, renewable energies have been vastly studied during the past decades. Among then, solar energy seems to be a promising way to help to achieve the desired goals. One of the emerging research fields inside solar technologies has been organic solar cells, which within the last years have manage to arrive up to 10 % of power conversion efficiencies values. This approach is mainly envisaged to play a decisive role for indoor, building integrated and wearable applications, in which others, maybe more efficient technologies, as silicon or thin film technologies have failed to address. To improve the performance of this polymer based solar cells, a vast research on clarifying the key feature leading the charge generation process, that straight influences the device efficiency, has been done within the last years. Among these efforts carbon nanotubes have arisen as possible building blocks to increase devices efficiencies. Many of their unique physical and chemical properties, such as chemical stability or high surface area, make carbon nanotubes a gifted material for different technological applications. The versatility of this material has been proved in a wide range of applications going from sensors, supercapacitors, transistors to solar cells. In specific for organic solar cells, carbon nanotubes are an ideal material to improve the charge separation and/or transport of the polymer-fullerene derivatives blends used as photoactive layer in these devices. However, the past years’ efforts, the charge transfer and dynamics mechanism at the interface stablish between polymer:fullerene and single wall carbon nanotubes (SWNTs) is not completely understood. On the other hand, carbon nanotubes suffer from a heterogeneous source material that frequently involves a variety of different nanotube species with diverse metallicity and diameter. To get rid of these drawbacks a further selective sorting of the carbon nanotubes, usually consuming high amounts of resources and lab time, needs to be done. In this work, the effect of the incorporation of commercially available, semiconducting (6,5) SWNTs into polymer:fullerene blends, commonly employed as photoactive layers for organic solar cells, was studied. Ultrafast transient absorption spectroscopy was employed as the main tool to study the ultrafast photophysical processes at the interface of the three different used materials. The study was conducted by selecting different (6,5) SWNTs dispersions in various dispersing solvents. Three different configurations giving rise to various interfacing scenarios were studied. The nanotubes were deposited: i) before or after the active layer as films, or ii) mixed with the polymer:fullerene blend in a bulk configuration. For the studies, mainly two different efficient polymers were used, P3HT and PTB7. Interesting and diverse results, that highpoint the potential of semiconducting SWNTs to improve the performance of organic solar cells, were found from the ultrafast transient spectroscopic research for each polymer:fullerene:SWNT blend. The work was also extended to the fabrication of organic solar cells both in inverted and conventional geometries employing the same here different configurations as for the spectroscopy studies. From these devices was also evident the possibilities of obtain enhanced devices performances upon incorporation of SWNTs for some of the structures used. Finally, the possibility of employed the nanotubes configurations previously studied and carbon nanotube dispersions with high excess of polymer, as semiconducting layers with improved injection behavior for field effect transistor was explored. It was observed that incorporation of SWNTs could be and easy way to enhanced the performance for polymer transistors.
In uno sforzo costante per ridurre le emissioni di carbonio e migliorare le produzioni energetiche non nocive per l’ambiente, le energie rinnovabili sono state ampiamente studiate nel corso degli ultimi decenni. Tra esse, l'energia solare sembra essere una tecnica promettente per contribuire a raggiungere tali obiettivi. Uno dei campi di ricerca emergenti all’interno delle tecnologie solari è quello celle solari organiche, che negli ultimi anni hanno raggiunto efficienze di conversione fino al 10%. L’approccio solare organico risulta essere decisivo per la conversione di luce in energia negli spazi interni, per la creazione di applicazioni integrate e indossabili, in cui altre tecnologie sicuramente più efficienti, come quella basata sul silicio, risulta troppo costosa e di difficile integrazione.Per migliorare le prestazioni delle celle solari a base di polimeri, ancora troppo basse per una ragionevole competitività commerciale, una vasta ricerca per chiarire le caratteristiche fondamentali del processo di generazione di carica, che influenza l'efficienza del dispositivo, è stata fatta negli ultimi anni. Tra questi sforzi i nanotubi di carbonio si sono imposti come possibili candidati per aumentare l'efficienza dei dispositivi. Molte delle loro proprietà fisiche e chimiche, come la stabilità chimica e l’alta area superficiale, fanno dei nanotubi di carbonio un materiale ottimale per diverse applicazioni tecnologiche. La versatilità di questo materiale è stata dimostrata in un'ampia gamma di applicazioni che vanno dai sensori, supercondensatori, transistori a celle solari. In particolare per le celle solari organiche, i nanotubi di carbonio sono un materiale ideale per migliorare la separazione di carica e/o il trasporto nelle miscele polimero-fullerene utilizzate come strato fotoattivo in questi dispositivi. Tuttavia, il meccanismo di trasferimento di carica e la dinamica all’interfaccia tra polimero, fullerene e nanotubi di carbonio a parete singola (SWNT) è tuttora non completamente noto. D'altra parte, le dispersioni di nanotubi di carbonio sono fortemente eterogenee in cui tali nanotubi hanno diverse chiralità, quindi diverso diametro e diverse caratteristiche elettroniche. Per superare questi inconvenienti un'ulteriore differenziazione (i.e. selezione di una sola chiralità) dei nanotubi di carbonio, che di solito consuma elevate quantità di risorse e di tempo di laboratorio, deve essere fatta. In questo lavoro, l'effetto della incorporazione di SWNT semiconduttori con chiralità (6,5), disponibili in commercio, sono stati studiati in miscele con polimero coniugati e fullerene, miscele comunemente impiegate come strati fotoattivi per le celle solari organiche. La spettroscopia ultraveloce di assorbimento transiente è stata impiegata come principale strumento per studiare i processi fotofisici all'interfaccia dei tre diversi materiali utilizzati. Lo studio è stato condotto selezionando diverse dispersioni di SWNT (6,5) in vari solventi. Tre diverse configurazioni, che danno origine a vari scenari di interfacciamento, sono stati studiati. I nanotubi sono stati depositati: i) prima o dopo lo strato attivo polimero:fullerene; ii) mescolati con la miscela polimero:fullerene. Per gli studi sono stati utilizzati due polimeri differenti come P3HT e PTB7. La spettroscopia ultraveloce ha permesso di capire alcuni meccanismi che potrebbero migliorare l’efficienza delle celle solari organiche. Il lavoro è stato anche esteso alla fabbricazione di celle solari organiche, sia in geometria convenzionale sia inversa. Da questi dispositivi risulta evidente la possibilità di ottenere dispositivi con migliorate prestazioni grazie all’incorporazione di SWNTs. Infine, la possibilità di impiegare nanotubi in miscele polimeriche note, al fine di migliorare l’iniezione di carica, è stata studiata mediante la fabbricazione e caratterizzazione di transistor ad effetto di campo.
Transient spectroscopy of carbon nanotube/conjugated polymer systems
FIGUEROA del VALLE, DIANA GISELL
Abstract
In a constant effort to reduce carbon emissions and improve the environmentally friendly energy production, renewable energies have been vastly studied during the past decades. Among then, solar energy seems to be a promising way to help to achieve the desired goals. One of the emerging research fields inside solar technologies has been organic solar cells, which within the last years have manage to arrive up to 10 % of power conversion efficiencies values. This approach is mainly envisaged to play a decisive role for indoor, building integrated and wearable applications, in which others, maybe more efficient technologies, as silicon or thin film technologies have failed to address. To improve the performance of this polymer based solar cells, a vast research on clarifying the key feature leading the charge generation process, that straight influences the device efficiency, has been done within the last years. Among these efforts carbon nanotubes have arisen as possible building blocks to increase devices efficiencies. Many of their unique physical and chemical properties, such as chemical stability or high surface area, make carbon nanotubes a gifted material for different technological applications. The versatility of this material has been proved in a wide range of applications going from sensors, supercapacitors, transistors to solar cells. In specific for organic solar cells, carbon nanotubes are an ideal material to improve the charge separation and/or transport of the polymer-fullerene derivatives blends used as photoactive layer in these devices. However, the past years’ efforts, the charge transfer and dynamics mechanism at the interface stablish between polymer:fullerene and single wall carbon nanotubes (SWNTs) is not completely understood. On the other hand, carbon nanotubes suffer from a heterogeneous source material that frequently involves a variety of different nanotube species with diverse metallicity and diameter. To get rid of these drawbacks a further selective sorting of the carbon nanotubes, usually consuming high amounts of resources and lab time, needs to be done. In this work, the effect of the incorporation of commercially available, semiconducting (6,5) SWNTs into polymer:fullerene blends, commonly employed as photoactive layers for organic solar cells, was studied. Ultrafast transient absorption spectroscopy was employed as the main tool to study the ultrafast photophysical processes at the interface of the three different used materials. The study was conducted by selecting different (6,5) SWNTs dispersions in various dispersing solvents. Three different configurations giving rise to various interfacing scenarios were studied. The nanotubes were deposited: i) before or after the active layer as films, or ii) mixed with the polymer:fullerene blend in a bulk configuration. For the studies, mainly two different efficient polymers were used, P3HT and PTB7. Interesting and diverse results, that highpoint the potential of semiconducting SWNTs to improve the performance of organic solar cells, were found from the ultrafast transient spectroscopic research for each polymer:fullerene:SWNT blend. The work was also extended to the fabrication of organic solar cells both in inverted and conventional geometries employing the same here different configurations as for the spectroscopy studies. From these devices was also evident the possibilities of obtain enhanced devices performances upon incorporation of SWNTs for some of the structures used. Finally, the possibility of employed the nanotubes configurations previously studied and carbon nanotube dispersions with high excess of polymer, as semiconducting layers with improved injection behavior for field effect transistor was explored. It was observed that incorporation of SWNTs could be and easy way to enhanced the performance for polymer transistors.File | Dimensione | Formato | |
---|---|---|---|
Thesis Diana Figueroa.pdf
non accessibile
Descrizione: Thesis file
Dimensione
6.49 MB
Formato
Adobe PDF
|
6.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/126903