The present thesis work is aimed to study the effect which the coupled fuselagedrivetrain dynamic system has on the aeroelastic stability of a medium-weight twin-engine helicopter, assuming the interface between these sub-systems localized in the gearboxes of the transmission line. In other words, a theoretical model able to describe the load path among the gears inside the gearbox and the fuselage, through the flexible supports of the gearbox housing, compatible with the rotorcraft aero-servo-elastic stability analysis framework, in which typical drivetrain models account the torsional dynamics only, is herein developed and used to study the effects that the dynamic interface among the drivetrain and the fuselage has on the helicopter stability. The whole Aeroelastic system of the helicopter has been realized in MASST (Modern Aeroservoelastic State Space Tools), a software developed by the Dipartimento di Ingegneria Aerospaziale of Politecnico di Milano able to perform massive analyses of relatively simple, yet complete modular models of complex linearized Aeroservoelastic systems of both rotary-wing than of fixed-wing aircrafts, built by linking together several dynamic sub-systems, built by linking together several dynamic sub-systems, each of them described by a set of differential equations casted in the State- Space form and collected from well-known, reliable and possibly state-of-the-art sources. Indeed, the global helicopter aeroelastic system has been developed blending together the reduced order model of the rotors linearized dynamics developed in CAMRAD/JA, the modal basis of the fuselage which has been obtained by reducing its detailed Finite Element Model developed in NASTRAN, the one-dimensional model of the drivetrain composed by a set of lumped inertias and torsional springs and finally the dynamics of the Engine/FADEC system has been interfaced with the other subsystems through an appropriate transfer function among the torque provided by the engine and the main rotor angular speed. A reduced order model of the rotational dynamics of a gearbox influenced by the torsional dynamics of the gears inside it has been developed starting from the equation of motion of a helicoidal gear pairs having parallel rotation axes and supported by flexible bearings housed in a rigid gearbox. Due to the high complexity of the starting model, in order to develop a scheme suitable with the available drivetrain model, several assumption have been made, among which the most relevant is to consider the each gear tooth as rigid element always in contact with the teeth of the other gear, allowing thus to define a perfect kinematic constraint among the torsional rotations of the gear pair. The model has been further modified to deal with the most general case in which each gear of a gear pairs is arbitrary oriented with respect to the other, highlighting the terms, for each gear pairs, that must be added both to the mass matrix than to the stiffness matrix of the global system. Based on the previous result, a routine able to properly modify the aeroelastic system matrices as a function of the couplings defined by the user has been developed and implemented within MASST. Starting from the available drivetrain one-dimensional model, a novel three-dimensional Finite Element Model properly built in order to reproduce only the drivetrain torsional dynamics influenced by the rotational stiffness of the gearbox mounting supports, has been developed. The model has been validated by comparing its static response to several load conditions, obtained from NASTRAN, with the expected values computed in theoretical way. The MASST code has been validated by comparing the eigenmodes of the NASTRAN model with the eigenvalues of an equivalent MASST model in which the system dynamics have been coupled by the routine. Finally, the helicopter stability has been studied. At first, the uncoupled aeroelastic system eigenvalues have been computed, in order to obtain the reference modal basis. Afterwards the stability analysis of the aeroelastic system in which the mass matrix and the stiffness matrix have been modified to include the fuselage-drivetrain coupling, has been performed. Then, the maximum percent variation both of the frequency and of the modal damping has been computed for the system eigenmodes mostly influenced by the coupling within the helicopter operative speed range.
Il presente lavoro di tesi si propone di studiare gli effetti che il sistema dinamico accoppiato fusoliera-trasmissione ha sulla stabilità aeroelastica di un velivolo ad ala rotante bimotore di medie dimensioni, supponendo l’interfaccia tra i due sottosistemi localizzata solo nelle scatole di riduzione presenti lungo la linea di trasmissione. Si vuole quindi sviluppare un modello teorico in grado di descrivere il percorso di carico tra gli ingranaggi interni alla scatola di riduzione e la fusoliera attraverso i supporti della scatola stessa che sia compatibile con i comuni modelli dinamici utilizzati per le analisi aeroservoelastiche dei velivoli ad ala rotante, in cui tipicamente solo la dinamica torsionale della trasmissione viene considerata, ed utilizzare tale modello per studiare l’effetto che l’interferenza dinamica tra la trasmissione e le scatole di riduzione ha sulla stabilità dell’intero elicottero. Il sistema aeroelastico completo dell’elicottero è stato realizzato tramite l’utilizzo di MASST (Modern Aeroservoelastic State Space Tools), un software in grado di svolgere molteplici analisi di complessi modelli modulari Aeroservoelastici linearizzati di velivoli ad ala fissa e rotante, realizzato presso il dipartimento di Ingegneria Aerospaziale del Politecnico di Milano, collegando tra loro diversi sottosistemi dinamici, ognuno dei quali espresso da un set di equazioni differenziali ordinarie poste agli stati, provenienti da codici di calcolo differenti. Infatti, i modelli linearizzati di ordine ridotto del rotore principale e di quello di coda, sono stati ottenuti tramite il software CAMRAD/JA, per diverse velocità di volo, la dinamica della fusoliera viene descritta da un opportuna base modale ridotta ottenuta dal modello di dettaglio ad elementi finiti della fusoliera stessa relizzato in NASTRAN, il modello monodimensionale della trasmissione è composto da un set di inerzie concentrate e molle torsionali ed infine, la dinamica del sistema motore/FADEC è stata inclusa nel sistema definendo un’opportuna funzione di trasferimento tra la coppia generata dal motore e la velocità angolare del rotore principale. Un modello ridotto della dinamica rotazionale di una scatola di riduzione influenzata dalla dinamica torsionale di una coppia d’ingranaggi cilindrici al suo interno è stato realizzato partendo dalle equazioni del moto di una coppia d’ingranaggi elicoidali con assi di rotazione paralleli e supportati da cuscinetti flessibili connessi ad una scatola di riduzione rigida. Data l’elevata complessità del modello iniziale, per ottenere una formulazione utilizzabile con i modelli a dispozione, sono state fatte una serie di ipotesi semplificative, su tutte quella di supporre i denti dell’ingranaggio infinitamente rigidi e sempre in contatto con i rispettivi denti dell’altra ruota dentata, consentendo così di legare le rotazioni dei due ingranaggi tramite un vincolo cinematico ideale. Il modello è stato infine esteso al caso più generale in cui i due ingranaggi sono orientati relativamente in modo arbitrario, evidenziando, per ogni coppia d’ingranaggi all’interno della scatola di riduzione, i termini che è necessario aggiungere alle matrici di massa e rigidezza del sistema globale per realizzare l’accoppiamento. Sulla base di questo risultato, è stata realizzata una routine MASST, in grado di modificare opportunamente le matrici del sistema aeroelastico in funzione degli accoppiamenti definiti dall’utente. Per la validazione di quest’ultima, partendo dal modello monodimensionale a disposizione, è stato creato un modello tridimensioanle ad elementi finiti della trasmissione, opportunamente definito per riprodurre la sola dinamica torsionale della trasmissione influenzata dalla rigidezza rotazionale delle scatole di riduzione. Il sistema è stato quindi validato confrontandone le risposte statiche, a diverse condizioni di carico, ottenute tramite NASTRAN, con quelle attese per via teorica. Il codice MASST è stato quindi validato confrontando i modi propri ottenuti dal modello ad elementi finiti con quelli di un modello equivalente realizzato in MASST accoppiando le dinamiche dei sottosistemi tramite la routine sviluppata. Si è passati, infine, allo svolgimento delle analisi di stabilità del sistema aeroelastico completo. Inizialmente vengono calcolati gli autovalori del sistema disaccoppiato, così da ottenere la base modale di riferimento, successivamente, l’analisi di stabilità viene ripetuta sul sistema in cui le matrici di massa e rigidezza sono opportunamente modificate per includere gli effetti dell’accoppiamento. Sono quindi stati individuati i modi aeroelastici il cui comportamento ha subito una significativa modifica rispetto alla condizione di riferimento, riportandone la massima variazione percentuale di frequenza e smorzamento modale ottenuta nel range di velocità in esame.
Impact of the flexibility of drive train and engine supports on rotorcraft dynamics
COCCO, LUIGI
2015/2016
Abstract
The present thesis work is aimed to study the effect which the coupled fuselagedrivetrain dynamic system has on the aeroelastic stability of a medium-weight twin-engine helicopter, assuming the interface between these sub-systems localized in the gearboxes of the transmission line. In other words, a theoretical model able to describe the load path among the gears inside the gearbox and the fuselage, through the flexible supports of the gearbox housing, compatible with the rotorcraft aero-servo-elastic stability analysis framework, in which typical drivetrain models account the torsional dynamics only, is herein developed and used to study the effects that the dynamic interface among the drivetrain and the fuselage has on the helicopter stability. The whole Aeroelastic system of the helicopter has been realized in MASST (Modern Aeroservoelastic State Space Tools), a software developed by the Dipartimento di Ingegneria Aerospaziale of Politecnico di Milano able to perform massive analyses of relatively simple, yet complete modular models of complex linearized Aeroservoelastic systems of both rotary-wing than of fixed-wing aircrafts, built by linking together several dynamic sub-systems, built by linking together several dynamic sub-systems, each of them described by a set of differential equations casted in the State- Space form and collected from well-known, reliable and possibly state-of-the-art sources. Indeed, the global helicopter aeroelastic system has been developed blending together the reduced order model of the rotors linearized dynamics developed in CAMRAD/JA, the modal basis of the fuselage which has been obtained by reducing its detailed Finite Element Model developed in NASTRAN, the one-dimensional model of the drivetrain composed by a set of lumped inertias and torsional springs and finally the dynamics of the Engine/FADEC system has been interfaced with the other subsystems through an appropriate transfer function among the torque provided by the engine and the main rotor angular speed. A reduced order model of the rotational dynamics of a gearbox influenced by the torsional dynamics of the gears inside it has been developed starting from the equation of motion of a helicoidal gear pairs having parallel rotation axes and supported by flexible bearings housed in a rigid gearbox. Due to the high complexity of the starting model, in order to develop a scheme suitable with the available drivetrain model, several assumption have been made, among which the most relevant is to consider the each gear tooth as rigid element always in contact with the teeth of the other gear, allowing thus to define a perfect kinematic constraint among the torsional rotations of the gear pair. The model has been further modified to deal with the most general case in which each gear of a gear pairs is arbitrary oriented with respect to the other, highlighting the terms, for each gear pairs, that must be added both to the mass matrix than to the stiffness matrix of the global system. Based on the previous result, a routine able to properly modify the aeroelastic system matrices as a function of the couplings defined by the user has been developed and implemented within MASST. Starting from the available drivetrain one-dimensional model, a novel three-dimensional Finite Element Model properly built in order to reproduce only the drivetrain torsional dynamics influenced by the rotational stiffness of the gearbox mounting supports, has been developed. The model has been validated by comparing its static response to several load conditions, obtained from NASTRAN, with the expected values computed in theoretical way. The MASST code has been validated by comparing the eigenmodes of the NASTRAN model with the eigenvalues of an equivalent MASST model in which the system dynamics have been coupled by the routine. Finally, the helicopter stability has been studied. At first, the uncoupled aeroelastic system eigenvalues have been computed, in order to obtain the reference modal basis. Afterwards the stability analysis of the aeroelastic system in which the mass matrix and the stiffness matrix have been modified to include the fuselage-drivetrain coupling, has been performed. Then, the maximum percent variation both of the frequency and of the modal damping has been computed for the system eigenmodes mostly influenced by the coupling within the helicopter operative speed range.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi_Cocco_Luigi.pdf
solo utenti autorizzati dal 14/12/2017
Descrizione: Tesi_Cocco_Luigi
Dimensione
3.47 MB
Formato
Adobe PDF
|
3.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/127863