The present study examines a topic of great interest to the applicability of a promising technology as solid oxide fuel cells, which concerns the possibility of using materials tolerant to sulphur and carbon deposition in the anode. The following study was conducted at Forschungszentrum Jülich and is part of a larger project focused on the realization of metal-supported cells as auxiliary power units (APUs), in collaboration with TU Wien and two industrial partners such as AVL and Plansee. The purpose of this work is to prepare and characterize electrochemically composite anodes, based on a mixture of doped strontium titanate and gadolinium-doped ceria. The two materials are not new to the world of SOFC and other researchers have already produced anodes using similar chemical compositions with some success, creating a porous structure with titanate and impregnating it with nanoparticles of ceria, through subsequent infiltration of wet solutions and thermal treatments. In this work, however, it was decided to mix the two phases directly, before sintering the anode, in such a way as to make the process less expensive, both from an energetic and economic point of view, and at the same time to extend the active region of the anode. To achieve this, three different stoichiometries were prepared for the titanate through solid state reactions, substituting lanthanum to strontium, niobium to titanium and by performing both the substitutions at the same time. Subsequently, the stability of the system under consideration was analysed together with the influence of parameters such as the electrode thickness, the mass ratio between the two phases and the use of three different doping in the electronic conductor, both from a morphological and electrochemical point of view and with the help of an equivalent circuit model. The system investigated resulted stable at the chosen temperature and atmosphere for sintering, both from a chemical and a mechanical point of view that. As regard the analyses carried out by electrochemical impedance spectroscopy, they did not indicate a clear predominance of one stoichiometry of titanate on the others. Instead, they have led to observe a key role of cerium oxide in the performance, justified by its catalytic activity towards the oxidation of hydrogen. In general, however, it was detected an insufficient presence of catalytically active sites in the porous structure of the analysed electrodes. In this respect, it has been identified a phenomenon of widespread coverage of ceria by titanate that prevents the first material to fulfil its role of catalyst and at the same time limits the extension of the contact region between the three phases (TPB): conductor ionic, electronic and gas phase conductor.
Il presente elaborato prende in esame un tema di grande interesse per l’applicabilità di una promettente tecnologia come le celle a combustibile ad ossido solido, che riguarda la possibilità di utilizzo di materiali tolleranti allo zolfo e alle deposizioni di carbonio nell’anodo. Lo studio che segue è stato condotto presso Forschungszentrum Jülich ed è inserito in un più ampio progetto incentrato sulla realizzazione di celle a supporto metallico come unità di potenza ausiliaria (APU), in collaborazione con TU Wien e due partner industriali quali AVL e Plansee. Lo scopo di questo lavoro consiste nel preparare e caratterizzare elettrochimicamente anodi compositi, basati su una miscela di titanato di stronzio e ossido di cerio dopati. I due materiali non sono nuovi al mondo delle SOFC e altri ricercatori hanno già prodotto anodi utilizzando simili composizioni chimiche con discreto successo, creando una struttura porosa con il titanato e impregnandola con nano-particelle di ceria, attraverso successive infiltrazioni di soluzioni liquide e trattamenti termici. In questo lavoro, invece, si è voluto miscelare le due fasi direttamente, prima di sinterizzare l’anodo, in modo tale da rendere il processo meno dispendioso sia dal punto di vista eneregetico che economico, e allo stesso tempo estendere la regione attiva dell’anodo. Per ottenere ciò, sono stati preparati tre diverse stechiometrie per il titanato attraverso reazioni allo stato solido, sostituendo del lantanio allo stronzio, del niobio al titanio ed effettuando entrambe le sostituzioni contemporaneamente. Successivamente è stata analizzata la stabilità del sistema preso in esame ed è stata investigata l’influenza di parametri come lo spessore dell’elettrodo, il rapporto massico fra le due fasi e l’utilizzo dei tre diversi dopanti nel conduttore elettronico, sia da un punto di vista morfologico che elttrochimico e con l’aiuto di un modello a circuito equivalente. Il sistema analizzato risulta stabile alla temperatura e all’atmosfera scelte per la sinterizzazione, sia da un punto di vista chimico che meccanico. Le analisi effettuate attraverso la spettroscopia di impedenza elettrochimica non hanno evidenziato una netta prevalenza di una stechiometria del titanato rispetto all’altra. Hanno invece portato ad osservare un ruolo fondamentale dell’ossido di cerio, giustificato dalla sua azione catalitica verso l’ossidazione dell’idrogeno. In generale però, è stata osservata un insufficiente presenza di siti cataliticamente attivi nella struttura porosa degli elettrodi analizzati. A questo riguardo è stato identificato un fenomeno di ricoprimento diffuso della ceria da parte del titanato, che impedisce al primo di adempire al proprio ruolo di catalizzatore e allo stesso tempo limita l’estensione della regione di contatto fra le tre fasi (TPB), ovvero conduttore ionico, conduttore elettronico e fase gas.
Development of composite SOFC based on substituted SrTiO3
OLIVIERI, ROBERTO
2015/2016
Abstract
The present study examines a topic of great interest to the applicability of a promising technology as solid oxide fuel cells, which concerns the possibility of using materials tolerant to sulphur and carbon deposition in the anode. The following study was conducted at Forschungszentrum Jülich and is part of a larger project focused on the realization of metal-supported cells as auxiliary power units (APUs), in collaboration with TU Wien and two industrial partners such as AVL and Plansee. The purpose of this work is to prepare and characterize electrochemically composite anodes, based on a mixture of doped strontium titanate and gadolinium-doped ceria. The two materials are not new to the world of SOFC and other researchers have already produced anodes using similar chemical compositions with some success, creating a porous structure with titanate and impregnating it with nanoparticles of ceria, through subsequent infiltration of wet solutions and thermal treatments. In this work, however, it was decided to mix the two phases directly, before sintering the anode, in such a way as to make the process less expensive, both from an energetic and economic point of view, and at the same time to extend the active region of the anode. To achieve this, three different stoichiometries were prepared for the titanate through solid state reactions, substituting lanthanum to strontium, niobium to titanium and by performing both the substitutions at the same time. Subsequently, the stability of the system under consideration was analysed together with the influence of parameters such as the electrode thickness, the mass ratio between the two phases and the use of three different doping in the electronic conductor, both from a morphological and electrochemical point of view and with the help of an equivalent circuit model. The system investigated resulted stable at the chosen temperature and atmosphere for sintering, both from a chemical and a mechanical point of view that. As regard the analyses carried out by electrochemical impedance spectroscopy, they did not indicate a clear predominance of one stoichiometry of titanate on the others. Instead, they have led to observe a key role of cerium oxide in the performance, justified by its catalytic activity towards the oxidation of hydrogen. In general, however, it was detected an insufficient presence of catalytically active sites in the porous structure of the analysed electrodes. In this respect, it has been identified a phenomenon of widespread coverage of ceria by titanate that prevents the first material to fulfil its role of catalyst and at the same time limits the extension of the contact region between the three phases (TPB): conductor ionic, electronic and gas phase conductor.File | Dimensione | Formato | |
---|---|---|---|
THESIS.pdf
non accessibile
Descrizione: TESTO DELLA TESI
Dimensione
3.48 MB
Formato
Adobe PDF
|
3.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/128601