The aim of the present work is to study the mechanisms involved in N2O formation over catalysts LNT (Lean NOx Trap). In order to achieve this goal, several experiments have been performed on lab-scale plant which allows to simulate the real operating conditions. The analysis focused on the following catalysts: Pt-Ba/Al2O3, Pt/Al2O3 and a commercial one. All have been tested within the same operativing conditions. The simplified model of a catalyst is represented by the Pt-Ba/Al2O3 one and it resulted, together with the commercial catalyst, as the most efficient in terms of NOx storage at high temperature. On the other hand the Pt/Al2O3 showed lower performance due to the lack of the storage element. During the reduction phase all three catalysts performed successfully with significant decreases of the N2O produced for increasing temperatures, a particular case for the temperature around 100 C when the commercial catalyst showed the lower N2O emission. A comparison between Pt/Al2O3 and Pt-Ba/Al2O3 showed that: Pt/Al2O3 catalyst shows a very high formation of N-species in Rich/Lean transition. Tests by FTIR in Operando conditions showed that ammonia is the reductant that remains adsorbed on the catalyst and it’s responsable for this formation. Pt-Ba/Al2O3 has been studied also considering different effects such as the increase of the reductant concentration: increasing H2 concentration, it reduces N2O emissions in the Lean/Rich transition which has no significant effect in the Rich/Lean transition. The introduction of an inert purge within the Rich/Lean and Lean/Rich transitions did not show significant effects in the first case, but for the second one, the concentration of the emitted N2O was lower. Experiments with the presence of CO2 e H2O have been compared with the "clean" ones, showing higher N2O formation in standard conditions has been compared, where the no-standard esperiment showed a lower N2O formation. Finally the costant presence of NO during the cycling has been investigated: the results showed an increase of the N2O produced mostly in the Rich phase.
Questo lavoro di tesi propone di studiare i meccanismi alla base della formazione di N2O su catalizzatori LNT (Lean DeNOx Trap) e su Pt/ ϒ-Al2O3. A tal proposito sono state condotte simulazioni in impianto, il quale permette di alternare fase di adsorbimento e fasi di riduzione a condizioni operative fissate. I catalizzatori oggetto di analisi sono stati Pt-Ba/ϒ-Al2O3, Pt/ ϒ-Al2O3 e un catalizzatore commerciale. Sono stati tutti e tre testati nelle stesse condizioni operative all’aumentare della temperatura. Il modello semplificato Pt-Ba/Al2O3 e il catalizzatore commerciale sono risultati efficienti in termini di NOx adsorbiti ad alte temperature al contrario del catalizzatore Pt/ ϒ-Al2O3 che, essendo privo dell’elemento di storage, ha mostrato una scarsa capacità di accumulo. In fase di riduzione, i tre catalizzatori hanno mostrato una riduzione significativa di N2O prodotto all’aumentare della temperatura, con un caso particolare a 100°C per il sistema commerciale. Comparando Pt/ ϒ-Al2O3 con Pt-Ba/ϒ-Al2O3 si nota come il Pt/ ϒ-Al2O3 sia caratterizzato da un picco secondario più elevato del primario. Prove FTIR in condizioni Operando hanno mostrato che la presenza di ammoniaca rimasta adsorbita sulla superficie del catalizzatore al termine della riduzione, è responsabile di un’elevata produzione di N-specie in transizione Rich/Lean. Il Pt-Ba/ϒ-Al2O3, è stato oggetto di studio anche per quanto riguarda altri effetti studiati in prove differenti: si è aumentata la concentrazione del riducente e il sistema catalitico è risultato più attivo in fase di riduzione, causando anche una minor produzione di N2O. E’ stata interposta una fase inerte nelle transizioni Rich/Lean e Lean/Rich, in cui la prima non ha mostrato effetti significatici in termini di produzione di N2O, la seconda ha influito sulla diminuzione della concentrazione emessa. Successivamente è stato esaminato l’effetto della specie NO in fase gas in entrambe le fasi i adsorbimento e riduzione, che ha portato ad un incremento di N2O emesso per quanto riguarda la transizione Lean/Rich. Infine state comparate due prove con e senza la presenza di CO2 e H2O, in cui il catalizzatore ha mostrato una concentrazione di N2O emessa più elevate rispetto alle condizioni standard.
Studio della formazione di N2O su sistemi LNT per motori a combustione magra
NOVINI, MARTINA
2015/2016
Abstract
The aim of the present work is to study the mechanisms involved in N2O formation over catalysts LNT (Lean NOx Trap). In order to achieve this goal, several experiments have been performed on lab-scale plant which allows to simulate the real operating conditions. The analysis focused on the following catalysts: Pt-Ba/Al2O3, Pt/Al2O3 and a commercial one. All have been tested within the same operativing conditions. The simplified model of a catalyst is represented by the Pt-Ba/Al2O3 one and it resulted, together with the commercial catalyst, as the most efficient in terms of NOx storage at high temperature. On the other hand the Pt/Al2O3 showed lower performance due to the lack of the storage element. During the reduction phase all three catalysts performed successfully with significant decreases of the N2O produced for increasing temperatures, a particular case for the temperature around 100 C when the commercial catalyst showed the lower N2O emission. A comparison between Pt/Al2O3 and Pt-Ba/Al2O3 showed that: Pt/Al2O3 catalyst shows a very high formation of N-species in Rich/Lean transition. Tests by FTIR in Operando conditions showed that ammonia is the reductant that remains adsorbed on the catalyst and it’s responsable for this formation. Pt-Ba/Al2O3 has been studied also considering different effects such as the increase of the reductant concentration: increasing H2 concentration, it reduces N2O emissions in the Lean/Rich transition which has no significant effect in the Rich/Lean transition. The introduction of an inert purge within the Rich/Lean and Lean/Rich transitions did not show significant effects in the first case, but for the second one, the concentration of the emitted N2O was lower. Experiments with the presence of CO2 e H2O have been compared with the "clean" ones, showing higher N2O formation in standard conditions has been compared, where the no-standard esperiment showed a lower N2O formation. Finally the costant presence of NO during the cycling has been investigated: the results showed an increase of the N2O produced mostly in the Rich phase.File | Dimensione | Formato | |
---|---|---|---|
2016_12_Novini.PDF.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
4.23 MB
Formato
Adobe PDF
|
4.23 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/128981