The building sector represents the largest energy-consumer player in the economy, covering over one-third of the total final energy and half of the global electricity consumption. It is still mainly dependent on fossil fuels, thus contributing significantly to the actual CO2 emissions level. Space heating and cooling, together with water heating, mostly rely on fossil-fuelled conventional systems. In a world scenario where energy consumptions are expected to rise by 2050 and increasing environmental awareness is fostered by the international community, it becomes essential to employ efficient and low-impact technologies. Among them, heat pumps represent an alternative to be pursued, but their diffusion is still confined to a small portion of the market. The present study aims at evaluating the annual thermodynamic performance of a Direct Expansion Solar-Assisted heat pump (DX-SAHP), integrated with an electric resistance, for the production of Domestic Hot Water. The annual efficiency of the system has been calculated and compared to the case study where the only resistance was activated. The results confirm the better performance deriving from the adoption of the heat pump technology. Then, the Direct Expansion Solar-Assisted heat pump has been replaced by an ordinary Air-to-Water heat pump, integrated by an electric resistance as before. The same thermodynamic analysis has been carried out and proves a better achievement, even if not outstanding, of the solar-assisted technology in terms of energy savings. Finally, two advanced configurations of Direct Expansion Solar-Assisted heat pump have been investigated: the Liquid-Line Suction-Line Heat Exchanger heat pump and the Two-Stage Compression heat pump. They have been coupled to the thermal storage and integrated with the electric resistance, as the reference case study. The thermodynamic analysis of the two advanced systems reveals lower annual efficiencies if compared to the system using the basic DX-SAHP.
Il settore dell’Edilizia rappresenta il principale responsabile in termini di consumi energetici, coprendo un terzo del consumo finale di energia a livello mondiale e metà del consumo globale di elettricità. È ancora in gran parte dipendente dall’impiego di combustibili fossili, contribuendo in maniera significativa all’attuale livello di emissioni di CO2. Gli impianti di riscaldamento e raffreddamento dell’ambiente, insieme al riscaldamento di acqua, si affidano per lo più a sistemi convenzionali a combustibili fossili. In uno scenario mondiale che prevede un aumento continuo dei consumi energetici entro il 2050 e una crescente sensibilità da parte della comunità internazionale verso le tematiche ambientali, acquisisce importanza sempre maggiore l’impiego di tecnologie efficienti e a basso impatto ambientale. Fra queste, le pompe di calore rappresentano certamente una valida alternativa, tuttavia la loro diffusione è ancora confinata a piccole porzioni del mercato attuale. Il presente studio si prefigge l’obiettivo di valutare la prestazione termodinamica annuale di una pompa di calore elioassistita ad espansione diretta, integrata con una resistenza elettrica, per la produzione di acqua calda sanitaria. L’efficienza annuale del sistema è stata calcolata e confrontata con il caso in cui la sola resistenza viene attivata. I risultati confermano la migliore prestazione derivante dall’utilizzo della pompa di calore. Successivamente, la pompa elioassistita ad espansione diretta è stata sostituita da una comune pompa di calore aria-acqua. È stata effettuata la medesima analisi termodinamica, che ha messo in luce un risultato migliore, sebbene in maniera contenuta, della tecnologia elioassistita in termini di risparmio energetico. Infine, sono state studiate due configurazioni avanzate di pompa di calore elioassistita ad espansione diretta: la pompa di calore con Liquid-Line Suction-Line Heat Exchanger e la pompa di calore a doppio stadio di compressione. Sono state separatamente accoppiate all’accumulo di acqua calda sanitaria e integrate da una resistenza elettrica, come per il caso di riferimento. L’analisi termodinamica dei due sistemi avanzati ha rivelato efficienze annuali inferiori rispetto al sistema che utilizza il modello base di pompa di calore elioassitita ad espansione diretta.
Thermodynamic annual performance of a direct expansion solar-assisted heat pump for domestic hot water production
LORI, CRISTINA
2015/2016
Abstract
The building sector represents the largest energy-consumer player in the economy, covering over one-third of the total final energy and half of the global electricity consumption. It is still mainly dependent on fossil fuels, thus contributing significantly to the actual CO2 emissions level. Space heating and cooling, together with water heating, mostly rely on fossil-fuelled conventional systems. In a world scenario where energy consumptions are expected to rise by 2050 and increasing environmental awareness is fostered by the international community, it becomes essential to employ efficient and low-impact technologies. Among them, heat pumps represent an alternative to be pursued, but their diffusion is still confined to a small portion of the market. The present study aims at evaluating the annual thermodynamic performance of a Direct Expansion Solar-Assisted heat pump (DX-SAHP), integrated with an electric resistance, for the production of Domestic Hot Water. The annual efficiency of the system has been calculated and compared to the case study where the only resistance was activated. The results confirm the better performance deriving from the adoption of the heat pump technology. Then, the Direct Expansion Solar-Assisted heat pump has been replaced by an ordinary Air-to-Water heat pump, integrated by an electric resistance as before. The same thermodynamic analysis has been carried out and proves a better achievement, even if not outstanding, of the solar-assisted technology in terms of energy savings. Finally, two advanced configurations of Direct Expansion Solar-Assisted heat pump have been investigated: the Liquid-Line Suction-Line Heat Exchanger heat pump and the Two-Stage Compression heat pump. They have been coupled to the thermal storage and integrated with the electric resistance, as the reference case study. The thermodynamic analysis of the two advanced systems reveals lower annual efficiencies if compared to the system using the basic DX-SAHP.File | Dimensione | Formato | |
---|---|---|---|
2016_12_LORI.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Tesi di Laurea Magistrale
Dimensione
3.84 MB
Formato
Adobe PDF
|
3.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/129021