The thesis deals with the broadly recognized problem of soiling of the surface of solar collectors, since it severely affects the energy yield of solar power plants. The specific goal is focused on Concentrated Solar Power (CSP) tower plant, which is one of the most promising technology for solar radiation harvesting and power production. Through a Matlab model developed during an exchange year at the Queensland University of Technology (QUT), Brisbane, QLD, Australia, the reflectivity of the surface of the heliostats composing the solar field is evaluated along a whole season given as inputs dust characteristics and weather conditions of a specific location. Finally, taken as input the direct normal irradiance (DNI) of the site, an estimation of the actual radiant power reflected towards the central receiver is given. The model explores many different phenomena that are involved in the whole soiling process since it has to simulate the deposition of dust onto the surfaces, the competing forces acting on deposited particles that tend either to keep them on the surface (adhesion) or to detach them from the surface (removal). The novelty of this work resides mostly in the comprehensive and detailed approach of the study that considers all the main steps of the soiling process through a deep physical insight, analysing the factors and the parameters that characterised each phenomenon, using physical laws derived from many and various field of research. The main outcomes of the model are the trend of reflectivity in time for each sector of the solar field and the related radiant power losses. The former is proved to be strongly dependent on the airborne dust concentration (that increases the detrimental effects of soiling) and on the frequency of rain (that restores the cleanliness of the heliostats). For low values of airborne dust concentration (as it is in Collinsville, QLD, Australia, where measurements were taken) the average soiling rate, expressed in percentage reflectivity loss per day, is 0.061 %/day while measurements reported in literature for Saudi Arabia gives higher values that depend on the higher dust concentration in air for those areas, which corresponds to the predictions of the model, given the related data inputs, as analysed in the performed sensitivity analysis.
La tesi studia il problema dello sporcamento delle superfici dei collettori solari, in quanto questo influisce significativamente sulla resa energetica di un impianto solare. L’obiettivo specifico si focalizza su impianti a concentrazione (CSP) a torre, essendo una delle tecnologie più promettenti per quanto riguarda lo sfruttamento della radiazione solare per la produzione energetica. Attraverso un modello costruito con Matlab durante un anno di studio presso la Queensland University of Technology (QUT) di Brisbane, in Australia, prese come input le caratteristiche della polvere e le condizioni ambientali di una specifica località, viene valutata la riflettività della superficie degli eliostati che compongono il campo solare durante un’intera stagione. Infine, considerando la radiazione normale diretta (DNI) per la medesima località, viene stimato l’effettivo flusso radiativo riflesso verso il ricevitore. Il modello si occupa dei diversi fenomeni presenti nel processo di sporcamento tra cui la deposizione di polvere sulle superfici, le forze di adesione e rimozione che tendono rispettivamente a mantenere le particelle di polvere aderenti alla superficie o a rimuoverle. L’originalità di questo lavoro risiede soprattutto nell’approccio allo studio dell’argomento, che considera i diversi passaggi del processo di sporcamento attraverso un’analisi fisica degli stessi, analizzando i fattori ed i parametri che caratterizzano ogni fenomeno fisico, utilizzando leggi fisiche ricavate spaziando attraverso diversi campi di ricerca. Il risultato principale del modello è l’andamento della riflettività nel tempo per ogni settore del campo solare a le relative perdite. Si è dimostrato che il primo dipende fortemente dalla concentrazione di polvere nell’aria (che aumenta l’effetto dannoso dello sporcamento) e dalla frequenza della pioggia (che ripristina la il livello di pulizia degli eliostati). Il tasso di sporcamento per bassi valori di concentrazione di polvere (come si verifica a Collinsville, Queensland, in Australia, dove le misurazioni utilizzate sono state prese), espresso in perdita percentuale di riflettività al giorno è pari a 0.061 %/day, mentre misure prese in Arabia Saudita e riportate in letteratura, relative a zone in cui la concentrazione di polvere in aria è notevolmente più elevata, riportano perdite di riflettività molto più elevate, compatibilmente con i risultati ottenuti tramite l’analisi di sensitività applicata sul modello.
Soiling of solar collectors : a model for prediction of its detrimental effects in a CSP tower plant
PICOTTI, GIOVANNI
2015/2016
Abstract
The thesis deals with the broadly recognized problem of soiling of the surface of solar collectors, since it severely affects the energy yield of solar power plants. The specific goal is focused on Concentrated Solar Power (CSP) tower plant, which is one of the most promising technology for solar radiation harvesting and power production. Through a Matlab model developed during an exchange year at the Queensland University of Technology (QUT), Brisbane, QLD, Australia, the reflectivity of the surface of the heliostats composing the solar field is evaluated along a whole season given as inputs dust characteristics and weather conditions of a specific location. Finally, taken as input the direct normal irradiance (DNI) of the site, an estimation of the actual radiant power reflected towards the central receiver is given. The model explores many different phenomena that are involved in the whole soiling process since it has to simulate the deposition of dust onto the surfaces, the competing forces acting on deposited particles that tend either to keep them on the surface (adhesion) or to detach them from the surface (removal). The novelty of this work resides mostly in the comprehensive and detailed approach of the study that considers all the main steps of the soiling process through a deep physical insight, analysing the factors and the parameters that characterised each phenomenon, using physical laws derived from many and various field of research. The main outcomes of the model are the trend of reflectivity in time for each sector of the solar field and the related radiant power losses. The former is proved to be strongly dependent on the airborne dust concentration (that increases the detrimental effects of soiling) and on the frequency of rain (that restores the cleanliness of the heliostats). For low values of airborne dust concentration (as it is in Collinsville, QLD, Australia, where measurements were taken) the average soiling rate, expressed in percentage reflectivity loss per day, is 0.061 %/day while measurements reported in literature for Saudi Arabia gives higher values that depend on the higher dust concentration in air for those areas, which corresponds to the predictions of the model, given the related data inputs, as analysed in the performed sensitivity analysis.File | Dimensione | Formato | |
---|---|---|---|
Soiling of Solar Collectors a Model for Prediction of its Detrimental Effects in a CSP tower plant.pdf
solo utenti autorizzati dal 02/12/2017
Descrizione: Testo della tesi
Dimensione
3.2 MB
Formato
Adobe PDF
|
3.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/129221