The development of renewable energies represents one of the most effective option to reduce the greenhouse gas emissions in the Oil&Gas industry. Among the available renewable sources, solar energy is probably the most promising due to its abundance, particularly when considering deserts and sub-tropical areas where many oil and gas companies operate stably. The photovoltaics and the concentrated solar power (CSP) are the two mainstream technologies that exploit the solar radiation to produce energy. Although, the CSP offers the great advantage of being able to integrate a thermal energy storage system (TES), it has not been applied in the Oil&Gas industry yet, while the photovoltaic already presents different applications. In fact, the CSP is still characterised by high costs and low returns with respect to the other energy sources. However, the possibility of hybridizing the CSP system with conventional fossil-fuelled power plants can represent a step forward for the development of this technology. The present thesis work analyses the possible integration of a parabolic trough system in an existing Oil&Gas plant in North Africa, in order to reduce the dependence on fossil fuels and the greenhouse gas emissions. In the first part of the work, the existing hybrid systems present in the literature have been analysed, highlighting the corresponding strengths and limitations and focusing on their compatibility with the existing gas turbine and the electricity demand of the site. Among the proposed plants, the ISCC has been selected as the most suitable to the site in question. A literature review of the previous scientific researches on the ISCC plants has been summarised, outlining the most efficient use of the solar heat and the different CSP technology. Differently from almost all the works present in the literature, this work analyses an ISCC plant operating under fuel saving strategy. In addition, it is here investigated whether the solar hybridization changes the design criteria of the combined cycle, issue that has not been analysed in detail so far. In particular, it is determined the possible benefit deriving from different dimensioning of the HRSG and from employing a steam cycle pressure different from the optimum value for the combined cycle. Accordingly, four different ISCC designs have been proposed. The ISCC plants, as well as the reference combined cycle, have been analysed and dimensioned using the software Thermoflex. In order to determine the performance of the plants under different values of DNI, both design and off-design conditions have been studied. Furthermore, the optimum partial load control on both the gas and the steam turbine has been suggested. The software SAM has been used to size the different solar fields and to perform the annual simulations of the ISCC plants. In order to determine the optimum ISCC design, the corresponding solar field area, the annual fuel consumption, the fuel conversion efficiency and the solar radiation to electrical efficiency are compared. In particular, the analysis has revealed the benefit of changing the design of the combined cycle to take into account of the integration of the solar field. After having determined the optimum design, other two ISCC plants, which differs in the value of the solar integration, have been investigated. First, a design and off-design study has been performed in order to determine the trend of the performance parameters of the plants as function of the incoming solar heat. Then, after sizing the solar fields, the yearly simulations are performed and the annual performance of the three different plants have been determined. The results provided by the yearly simulations have been employed in the economic life cycle cost analysis (LCCA) to determine the cost effectiveness of the different plants. A sensitivity analysis has been performed to determine the solar field cost, the gas price and the incentives required for the economic feasibility of the plants in both absence and presence of an emission regulation. A possible alternative hybrid plant employing an ORC instead of the traditional steam cycle has then been proposed. The use of ORC allows limiting the water consumption of the plant, which can be a critical issue in high-insolation arid zones. Although the ORC is currently used in both CSP and heat recovery from gas turbine applications, this is the first work focusing on this kind of hybridization. The optimum plant configuration, in terms of working fluid, cycle pressure and use of recuperator have been investigated. Furthermore, partialization and sliding pressure partial load control on the ORC turbine have been compared. Three hybrid plants corresponding to the ISCC plant configurations have then been analysed. A similar design and off-design study, as well as the yearly simulation, have been performed to investigate the efficiency of this hybrid solution. The LCCA has determined the optimum solar integration and the economic feasibility of this hybrid plant. Finally, the average cost of electricity of these hybrid plants is compared to that of the corresponding ISCC configuration to determine the best hybrid solution. In the last chapter, it has been investigated the benefit of integrating a storage system in the ISCC plant. Two solution have been analysed, both aiming to increase the fuel conversion efficiency of the plant. Furthermore, one represents the only solution to achieve an annual solar contribution greater than 5%. By performing a yearly simulation and the economic analysis, the benefit provided by the integration with the TES system has been investigated.
Lo sviluppo delle energie rinnovabili rappresenta una delle soluzioni più efficaci per ridurre le emissioni di gas serra nell’industria Oil&Gas. Tra le fonti rinnovabili disponibili l'energia solare è la più attraente grazie alla sua elevata disponibilità, soprattutto se si considera che molte aziende petrolifere operano stabilmente in zone desertiche e sub-tropicali. Il fotovoltaico e il solare termodinamico (CSP) sono le due tecnologie che sfruttano la radiazione solare per produrre energia. Sebbene, il CSP offra il grande vantaggio di poter integrare un sistema di accumulo di energia termica (TES), esso, a differenza del fotovoltaico, non è stato ancora applicato nel settore Oil&Gas. Infatti, lo sviluppo del CSP è ancora limitato per i costi elevati costi e i bassi rendimenti rispetto alle altre fonti energetiche. Tuttavia, la possibilità di ibridizzare gli impianti CSP con le centrali a combustibili fossili convenzionali rappresenta un’importanze soluzione per lo sviluppo di questa tecnologia. Il presente lavoro di tesi analizza la possibilità di integrare un sistema CSP parabolico in un impianto Oil&Gas esistente situato in Nord Africa, al fine di ridurre la dipendenza dai combustibili fossili e le emissioni di gas serra. Nella prima parte del lavoro sono stati esaminati i sistemi ibridi esistenti presenti in letteratura, evidenziando i corrispondenti punti di forza e limiti, e concentrandosi sulla compatibilità con la turbina a gas esistente e la domanda elettrica del sito. Tra le piante esistenti, l’ISCC è stato individuato come il più adatto al sito in questione. È stata, pertanto, effettuata una revisione bibliografica delle precedenti ricerche scientifiche, le quali si sono principalmente incentrate nel determinare l'uso più efficiente del calore solare. A differenza di quasi tutte le opere presenti in letteratura, questo lavoro analizza un impianto ISCC operante in strategia di risparmio di carburante. Inoltre, esamina l’eventualità che l'ibridazione con la fonte solare cambi i criteri di progettazione del ciclo combinato, questione che finora non è mai stata analizzata in dettaglio. In particolare, è stato valutato il possibile beneficio derivante da un diverso dimensionamento dell’HRSG e dall'impiego di una pressione del ciclo a vapore diversa dal valore ottimale per il ciclo combinato. Sono stati quindi proposti quattro differenti design. Questi design dell’impianto ISCC, nonché il ciclo di riferimento combinato, sono stati analizzati e dimensionati utilizzando il software Thermoflex. Al fine di determinare le prestazioni degli impianti sotto diversi valori di DNI, si è studiato il loro comportamento sia in condizioni di design che di fuori progetto. Inoltre, è stato suggerito il controllo ottimale ai carichi parziali sia della turbina a gas che di quella a vapore. Il software SAM è stato utilizzato per dimensionare i diversi campi solari e per eseguire le simulazioni annuali degli impianti. Per determinare il design dell’ISCC ottimale, sono state confrontate l'area del campo solare, il combustibile bruciato e la sua efficienza di conversione annuale. In particolare, questo studio ha dimostrato il beneficio di cambiare il dimensionamento del ciclo combinato per tener conto dell'integrazione con la fonte solare. Dopo aver determinato la progettazione ottimale, sono stati studiati altre due impianti ISCC, che differiscono nel valore di design dell’integrazione solare. Innanzitutto, si è svolto uno studio simile a quello eseguito per i diversi design dell’ISCC. Successivamente, dopo aver dimensionato i campi solari, sono state effettuale simulazioni annuali e sono state determinate e confrontate le prestazioni annuali dei tre diversi impianti. I risultati forniti dalle simulazioni annuali sono stati poi impiegati nella analisi economica LCCA, per determinare l'efficacia in termini di costo dei diversi impianti. Un’analisi di sensitività è stata poi condotta al fine di determinare il costo del campo solare, il prezzo del gas e gli incentivi necessari per la fattibilità economica degli impianti sia in assenza che in presenza di un regolamento sulle emissioni. Successivamente, è stato proposto lo sviluppo di un impianto ibrido alternativo che sfrutta un ORC invece del ciclo a vapore tradizionale. L'uso di un ORC permette di limitare notevolmente il consumo di acqua dell’impianto, che può rappresentare una criticità nelle zone aride ad alta insolazione. Sebbene gli impianti ORC sono attualmente utilizzati sia in applicazioni CSP che nel recupero del calore dalle turbine a gas, questo è il primo lavoro che tratta una ibridazione gas/solare. È stata analizzata la configurazione dell'impianto ottimale in termini di fluido di lavoro, pressione del ciclo e l'utilizzo di un ciclo recuperativo. Inoltre, è stato confrontato il controllo ai carichi parziali in parzializzazione e in sliding pressure. Sono state quindi esaminate tre piante ibride con un’integrazione solare corrispondente a quella delle configurazioni impiantistiche ISCC. Similmente, è stato effettuato uno studio di funzionamento in condizioni di design e di fuori progetto, così come la simulazione annua, al fine di valutare l'efficienza di questa soluzione ibrida. Attraverso l’LCCA degli impianti, sono state determinate sia l'integrazione solare ottima che la fattibilità economica di questo impianto ibrido. Infine, è stato confrontato il costo medio di produzione dell’energia elettrica di queste piante ibride con quelle delle corrispondenti configurazioni ISCC, in modo da determinare la migliore soluzione ibrida per la produzione di energia. Infine, è stato analizzato il vantaggio di integrare un sistema di stoccaggio agli impianti ISCC studiati. In particolare, sono state individuate due soluzioni, ognuna delle quali consente di aumentare l'efficienza di conversione del combustibile dell'impianto. Il beneficio fornito dalla integrazione con il sistema di stoccaggio è stato quindi analizzato eseguendo una simulazione annuale e l'analisi economica.
Integration of concentrated solar power (CSP) in existing oil & gas upstream plants to reduce fossil fuel dependence
LAMBERTI, MARCO
2015/2016
Abstract
The development of renewable energies represents one of the most effective option to reduce the greenhouse gas emissions in the Oil&Gas industry. Among the available renewable sources, solar energy is probably the most promising due to its abundance, particularly when considering deserts and sub-tropical areas where many oil and gas companies operate stably. The photovoltaics and the concentrated solar power (CSP) are the two mainstream technologies that exploit the solar radiation to produce energy. Although, the CSP offers the great advantage of being able to integrate a thermal energy storage system (TES), it has not been applied in the Oil&Gas industry yet, while the photovoltaic already presents different applications. In fact, the CSP is still characterised by high costs and low returns with respect to the other energy sources. However, the possibility of hybridizing the CSP system with conventional fossil-fuelled power plants can represent a step forward for the development of this technology. The present thesis work analyses the possible integration of a parabolic trough system in an existing Oil&Gas plant in North Africa, in order to reduce the dependence on fossil fuels and the greenhouse gas emissions. In the first part of the work, the existing hybrid systems present in the literature have been analysed, highlighting the corresponding strengths and limitations and focusing on their compatibility with the existing gas turbine and the electricity demand of the site. Among the proposed plants, the ISCC has been selected as the most suitable to the site in question. A literature review of the previous scientific researches on the ISCC plants has been summarised, outlining the most efficient use of the solar heat and the different CSP technology. Differently from almost all the works present in the literature, this work analyses an ISCC plant operating under fuel saving strategy. In addition, it is here investigated whether the solar hybridization changes the design criteria of the combined cycle, issue that has not been analysed in detail so far. In particular, it is determined the possible benefit deriving from different dimensioning of the HRSG and from employing a steam cycle pressure different from the optimum value for the combined cycle. Accordingly, four different ISCC designs have been proposed. The ISCC plants, as well as the reference combined cycle, have been analysed and dimensioned using the software Thermoflex. In order to determine the performance of the plants under different values of DNI, both design and off-design conditions have been studied. Furthermore, the optimum partial load control on both the gas and the steam turbine has been suggested. The software SAM has been used to size the different solar fields and to perform the annual simulations of the ISCC plants. In order to determine the optimum ISCC design, the corresponding solar field area, the annual fuel consumption, the fuel conversion efficiency and the solar radiation to electrical efficiency are compared. In particular, the analysis has revealed the benefit of changing the design of the combined cycle to take into account of the integration of the solar field. After having determined the optimum design, other two ISCC plants, which differs in the value of the solar integration, have been investigated. First, a design and off-design study has been performed in order to determine the trend of the performance parameters of the plants as function of the incoming solar heat. Then, after sizing the solar fields, the yearly simulations are performed and the annual performance of the three different plants have been determined. The results provided by the yearly simulations have been employed in the economic life cycle cost analysis (LCCA) to determine the cost effectiveness of the different plants. A sensitivity analysis has been performed to determine the solar field cost, the gas price and the incentives required for the economic feasibility of the plants in both absence and presence of an emission regulation. A possible alternative hybrid plant employing an ORC instead of the traditional steam cycle has then been proposed. The use of ORC allows limiting the water consumption of the plant, which can be a critical issue in high-insolation arid zones. Although the ORC is currently used in both CSP and heat recovery from gas turbine applications, this is the first work focusing on this kind of hybridization. The optimum plant configuration, in terms of working fluid, cycle pressure and use of recuperator have been investigated. Furthermore, partialization and sliding pressure partial load control on the ORC turbine have been compared. Three hybrid plants corresponding to the ISCC plant configurations have then been analysed. A similar design and off-design study, as well as the yearly simulation, have been performed to investigate the efficiency of this hybrid solution. The LCCA has determined the optimum solar integration and the economic feasibility of this hybrid plant. Finally, the average cost of electricity of these hybrid plants is compared to that of the corresponding ISCC configuration to determine the best hybrid solution. In the last chapter, it has been investigated the benefit of integrating a storage system in the ISCC plant. Two solution have been analysed, both aiming to increase the fuel conversion efficiency of the plant. Furthermore, one represents the only solution to achieve an annual solar contribution greater than 5%. By performing a yearly simulation and the economic analysis, the benefit provided by the integration with the TES system has been investigated.File | Dimensione | Formato | |
---|---|---|---|
2016_12_lamberti.pdf
non accessibile
Descrizione: Thesis text
Dimensione
5.03 MB
Formato
Adobe PDF
|
5.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/129661