Picking is the activity of orders preparation within the warehouse. The importance of having an efficient picking activity is growing more and more over the years, the reason is mainly represented by the e-commerce development that requires orders to be delivered quickly and in the right quantities. From a detailed analysis of the literature on “parts-to-picker systems”, it emerged that the remote OPS configuration has been not fully studied, although today it is widespread in many companies. In remote OPS configuration, the picking stations are separated from the storage system, using a conveyor to connect the two areas. Although most of these configurations provide the miniload as a storage system, in recent years have also been developed remote OPS served by AVS/RS, an automated storage system able to decouple horizontal and vertical movements by automated vehicles and elevators. Therefore, it has been chosen to analyze the performances of remote OPS served by miniload or AVS/RS, through the development of an analytical model, which has been then validated through simulation. The tool used to develop the model is the queuing theory; more precisely, the system has been modeled with a semi-open queuing network and solved through the matrix-geometric method. The model was then applied by comparing different configurations, with the purpose to understand the relationship between the upstream system (storage and retrieval system) and the downstream system (conveyors and picking station). Some management policies not much addressed in the literature were also analyzed, such as the CONWIP control system and the buffer size of the picking station.
Il picking rappresenta l’attività di allestimento degli ordini all’interno del magazzino. L’importanza di avere un’efficiente attività di picking sta crescendo sempre di più nel corso degli anni, il motivo è rappresentato soprattutto dallo sviluppo dell’e-commerce che richiede ordini consegnati in tempi brevi e nelle giuste quantità. Da un’approfondita analisi della letteratura sui sistemi di picking di tipo “parts-to-picker”, è emerso che la configurazione remote OPS è stata poco analizzata, nonostante sia oggigiorno diffusa in molte aziende. La configurazione remote OPS prevede che le stazioni di picking siano separate dal sistema di stoccaggio, utilizzando un sistema di convogliamento per collegare le due aree. Nonostante in genere questa configurazione preveda il miniload come sistema di stoccaggio, nel corso degli ultimi anni, sono stati sviluppati anche remote OPS serviti da AVS/RS, ovvero sistemi di stoccaggio automatizzati in grado di disaccoppiare movimenti orizzontali e verticali tramite veicoli automatizzati e ascensori. In questa tesi si è quindi scelto di analizzare le prestazioni di remote OPS serviti da miniload o da AVS/RS, tramite lo sviluppo di un modello analitico, validato poi tramite simulazione. Lo strumento utilizzato per sviluppare il modello è la teoria delle code; più precisamente il sistema è stato modellato con una rete semi-aperta e risolto attraverso il matrix geometric method. Il modello costruito è stato poi applicato confrontando diverse configurazioni, con lo scopo di capire il rapporto tra sistema a monte (sistema di prelievo e stoccaggio) e sistema a valle (convogliatori e stazione di picking). Sono state inoltre analizzate alcune politiche gestionali poco affrontate in letteratura, come il sistema di controllo CONWIP e la dimensione del buffer della stazione di picking.
Remote parts-to-picker order picking system : development of an analytical model for performance assessment
PANICHELLI, DANIELE
2015/2016
Abstract
Picking is the activity of orders preparation within the warehouse. The importance of having an efficient picking activity is growing more and more over the years, the reason is mainly represented by the e-commerce development that requires orders to be delivered quickly and in the right quantities. From a detailed analysis of the literature on “parts-to-picker systems”, it emerged that the remote OPS configuration has been not fully studied, although today it is widespread in many companies. In remote OPS configuration, the picking stations are separated from the storage system, using a conveyor to connect the two areas. Although most of these configurations provide the miniload as a storage system, in recent years have also been developed remote OPS served by AVS/RS, an automated storage system able to decouple horizontal and vertical movements by automated vehicles and elevators. Therefore, it has been chosen to analyze the performances of remote OPS served by miniload or AVS/RS, through the development of an analytical model, which has been then validated through simulation. The tool used to develop the model is the queuing theory; more precisely, the system has been modeled with a semi-open queuing network and solved through the matrix-geometric method. The model was then applied by comparing different configurations, with the purpose to understand the relationship between the upstream system (storage and retrieval system) and the downstream system (conveyors and picking station). Some management policies not much addressed in the literature were also analyzed, such as the CONWIP control system and the buffer size of the picking station.File | Dimensione | Formato | |
---|---|---|---|
2016_12_Panichelli.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
3.14 MB
Formato
Adobe PDF
|
3.14 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/131270