Vascular tissue engineering (vTE) has made significant progress over the past decades towards the creation of engineered blood vessel-like structures suitable for replacement or bypass of damaged arteries. More recently, in parallel to the quest for clinical applications, engineered tissues have been developed as laboratory-oriented tools to study the mechanisms involved in vascular physiology and pathophysiology. In this context, the goal of this PhD thesis was to develop a suitable strategy to engineer 3D vascular tissues as in vitro models for mechanobiology investigations. The main commitment was to capture in vitro some of the complex features of the in vivo vascular milieu, with particular focus on the replication of the vascular-like hemodynamics and the way how it influences cell and tissue behaviors. Since vascular smooth muscle cells (vSMCs) are the predominant cell type in blood vessel wall and primarily responsible for vasoregulation and vessel remodeling, major efforts have been devoted to the in vitro development of SMC-based engineered tissues. On the one hand the focus was to demonstrate that contractile vascular cells respond more physiologically in a 3D environment under cyclic mechanical stimulation; on the other hand, the focus was on the development and stepwise optimization of a culture platform for the fabrication of tubular constructs and their stimulation at once. In the whole context of the vTE, the general picture drawn in this PhD thesis highlighted i) the importance of the 3D environment to study the cell behavior, and ii) the need of mechanically stimulating 3D vascular tissue structures to drive their biological and biomechanical properties and their maintenance in vitro. This research has led to the development of a newly, easy-to-use and inexpensive bioreactor useful to produce viable vascular models. In perspective, this platform will provide new insights into the potential to drive cell behavior while studying mechanotransduction pathways activated following the exposure to mechanical strain.
L’ingegneria tissutale vascolare (vTE), finalizzata alla creazione di strutture ingegnerizzate per la sostituzione o il by-pass di vasi sanguigni danneggiati, è progredita significativamente negli ultimi decenni. Di recente, ed parallelamente alla necessità clinica, sono stati sviluppati tessuti ingegnerizzati al fine di studiare in vitro i meccanismi coinvolti nella fisiopatologia vascolare. In questo contesto, l’obiettivo di questa Tesi di Dottorato è stato quello di sviluppare una strategia funzionale all’ingegnerizzazione del tessuto vascolare utilizzabile come modello in vitro per studi di meccanobiologia. In particolare, si è voluto replicare in vitro alcune delle caratteriste principali dell’ambiente vascolare presente in vivo, e si è rivolto particolare interesse nel replicare l’emodinamica scolare e il suo ruolo nelle proprietà cellulari e tessutali. Poiché le cellule muscolari lisce (vSMCs) rappresentano il tipo cellulare maggiormente presente nella parete vascolare, lo sforzo più grande è stato orientato allo sviluppo di tessuti ingegnerizzati costituiti da vSMCs. Nel progetto di tesi, da un lato si è voluto dimostrare come le cellule vascolari contrattili in un ambiente 3D e sotto stimolazione meccanica ciclica rispondo in maniera più fisiologica; dall’altro lato, si è andati a sviluppare e ottimizzare una piattaforma di coltura progettata per la fabbricazione e stimolazione di costrutti tubulari. Complessivamente, con i risultati ottenuti in questa tesi si può evincere: i) l’importanza dell’ambiente 3D per lo studio delle caratteristiche delle vSMCs; ii) la necessità e l’importanza della stimolazione meccanica di tessuti vascolari 3D al fine di guidarne le proprietà meccaniche e biologiche e il mantenimento della loro funzionalità in vitro. Le attività di ricerca hanno portato allo sviluppo di un innovativo ed intuitivo bioreattore finalizzato alla produzione di modelli vascolari. In prospettiva, questa piattaforma di coltura consentirà lo studio dei meccanismi che guidano lo sviluppo tessutale e le caratteristiche cellulari delle vSMCs, insieme a quei meccanismi di meccanotrasduzione attivati in seguito all’esposizione dei tessuti ingegnerizzati alla stimolazione meccanica.
Engineering vascular tissue models in vitro
BONO, NINA
Abstract
Vascular tissue engineering (vTE) has made significant progress over the past decades towards the creation of engineered blood vessel-like structures suitable for replacement or bypass of damaged arteries. More recently, in parallel to the quest for clinical applications, engineered tissues have been developed as laboratory-oriented tools to study the mechanisms involved in vascular physiology and pathophysiology. In this context, the goal of this PhD thesis was to develop a suitable strategy to engineer 3D vascular tissues as in vitro models for mechanobiology investigations. The main commitment was to capture in vitro some of the complex features of the in vivo vascular milieu, with particular focus on the replication of the vascular-like hemodynamics and the way how it influences cell and tissue behaviors. Since vascular smooth muscle cells (vSMCs) are the predominant cell type in blood vessel wall and primarily responsible for vasoregulation and vessel remodeling, major efforts have been devoted to the in vitro development of SMC-based engineered tissues. On the one hand the focus was to demonstrate that contractile vascular cells respond more physiologically in a 3D environment under cyclic mechanical stimulation; on the other hand, the focus was on the development and stepwise optimization of a culture platform for the fabrication of tubular constructs and their stimulation at once. In the whole context of the vTE, the general picture drawn in this PhD thesis highlighted i) the importance of the 3D environment to study the cell behavior, and ii) the need of mechanically stimulating 3D vascular tissue structures to drive their biological and biomechanical properties and their maintenance in vitro. This research has led to the development of a newly, easy-to-use and inexpensive bioreactor useful to produce viable vascular models. In perspective, this platform will provide new insights into the potential to drive cell behavior while studying mechanotransduction pathways activated following the exposure to mechanical strain.File | Dimensione | Formato | |
---|---|---|---|
Nina BONO - 2017 01 07 PhD thesis.pdf
accessibile in internet per tutti
Descrizione: Tesi di dottorato finale Nina BONO
Dimensione
19.51 MB
Formato
Adobe PDF
|
19.51 MB | Adobe PDF | Visualizza/Apri |
NB PhD Thesis - Response to the reviewers.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Risposte ai revisori
Dimensione
115.1 kB
Formato
Adobe PDF
|
115.1 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/131403