The motivation of this work lies in the exciting opportunity to create and demonstrate a future class of wireless sensor nodes (WSN) that operates purely on harvested ambient indoor light energy, developing a strategy for managing that energy to extend the lifetime of the WSN. Such device will enable to rapidly acquire important data and metrics in order to enhance active monitoring in a wide range of applications. This work is developed at University of Berkeley, California as part of the Flextech project, which aims to develop a printed, fully integrated, self- rechargeable wireless sensor node for engine condition monitoring with applications in rotorcraft and turbines. WSN are self-powered systems able to gather data from their environment, perform minimal computation tasks and communicate with other devices. They are expected to work in different environments, including indoors, where light levels are well below typical outdoors level. At first sight this extremely low-power light can be considered as unsuitable for high-power load demand of a WSN. We demonstrate that integrating a printable organic solar cell optimized for indoor light, fully printed super-capacitors as energy reservoir, low-power electronics and smart triggered duty cycle algorithms, these power demands can be met with consistency. All energy and storage components are fabricated at the Advanced Manufacturing for Energy Lab in parallel with this work, reaching PCE of 14% for the organic solar cells and capacitance as high as 200 mF for the organic super capacitors. Nordic Semiconductor’s nRF51822 SoC has been selected as core of the application and an adaptive algorithm has been implemented to follow the changes of environ- mental lighting. We built a real system that integrates printable organic photovoltaic energy harvest- ing, printed supercapacitor energy storage, and the low power electronic that senses acceleration and transmits data packets to a base station for frequency processing. With this work we demonstrate a WSN capable of running exclusively on indoor light, opening the door for networks of nodes that can operate autonomously in common workspaces thus enabling exciting applications in the Internet Of Things.
Scopo di questo lavoro è la progettazione e dimostrazione di una futura classe di sensori wireless (WSN) operanti esclusivamente con luce artificiale. Lavorando in ambienti chiusi e lontani dalla luce solare, è necessario lo sviluppo di una strate- gia di gestione dell’energia estratta per estendere il tempo di vita del WSN. Un tale dispositivo permetterà la rapida acquisizione di importanti dati e metriche, abilitando il monitoraggio attivo in una vasta gamma di applicazioni. Questo lavoro è stato sviluppato presso la University of Berkeley come parte del Flextech Project, che si prefigge come scopo lo sviluppo di un sensore totalmente stampato, integrato, non cablato e che non richieda l’uso di batterie, per applicazioni di monitoraggio di elicotteri militari e motori. I WSN sono sistemi auto alimentati in grado di raccogliere informazioni dall’am- biente e comunicare con altri dispositivi. Essi devono essere in grado di lavorare in una moltitudine diversa di ambienti, incluso in ambienti chiusi, dove i livelli di illuminazione sono tipicamente scarsi. A prima vista una così scarsa quantità di energia potrebbe sembrare inadatta ad alimentare completamente un WSN. In questo lavoro si dimostrerà che integrando celle solari organiche stampate ed ottimizzate per indoor, super capacitori organici come riserva di energia, elettronica a basso consumo energetico e sviluppando convenienti algoritmi adattivi, tale obiet- tivo può essere sicuramente raggiunto. Tutti i componenti di generazione e conserva di energia sono stati pienamente sviluppati presso il Advanced Manufacturing for Energy Lab in parallelo a questo lavoro, raggiungendo livelli di PCE fino a 14% per le celle solari a capacità fino a 200 mF per i super condensatori. Il chip nRF51822 prodotto da Nordic Semiconductor è stato selezionato come cuore dell’applicazione e un algoritmo adattivo è stato implementato per adattarsi ai cambi di illuminazione ambientale. È stato costruito un sistema reale e funzionante che integri le celle solari e super capacitori organici con un’elettronica che misuri le vibrazioni di un motore e mandi i dati a una stazione base per successive elaborazioni. Con questo lavoro si dimostra la possibilità di un WSN capace di sostenersi esclu- sivamente con bassi livelli di luce artificiale, aprendo le porte a reti di sensori autonomi e connessi per numerose applicazioni nell’Internet Of Things.
Printed self-powered wireless sensor node for ubiquitous computing
RAFFONE, PIERLUIGI
2015/2016
Abstract
The motivation of this work lies in the exciting opportunity to create and demonstrate a future class of wireless sensor nodes (WSN) that operates purely on harvested ambient indoor light energy, developing a strategy for managing that energy to extend the lifetime of the WSN. Such device will enable to rapidly acquire important data and metrics in order to enhance active monitoring in a wide range of applications. This work is developed at University of Berkeley, California as part of the Flextech project, which aims to develop a printed, fully integrated, self- rechargeable wireless sensor node for engine condition monitoring with applications in rotorcraft and turbines. WSN are self-powered systems able to gather data from their environment, perform minimal computation tasks and communicate with other devices. They are expected to work in different environments, including indoors, where light levels are well below typical outdoors level. At first sight this extremely low-power light can be considered as unsuitable for high-power load demand of a WSN. We demonstrate that integrating a printable organic solar cell optimized for indoor light, fully printed super-capacitors as energy reservoir, low-power electronics and smart triggered duty cycle algorithms, these power demands can be met with consistency. All energy and storage components are fabricated at the Advanced Manufacturing for Energy Lab in parallel with this work, reaching PCE of 14% for the organic solar cells and capacitance as high as 200 mF for the organic super capacitors. Nordic Semiconductor’s nRF51822 SoC has been selected as core of the application and an adaptive algorithm has been implemented to follow the changes of environ- mental lighting. We built a real system that integrates printable organic photovoltaic energy harvest- ing, printed supercapacitor energy storage, and the low power electronic that senses acceleration and transmits data packets to a base station for frequency processing. With this work we demonstrate a WSN capable of running exclusively on indoor light, opening the door for networks of nodes that can operate autonomously in common workspaces thus enabling exciting applications in the Internet Of Things.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi.pdf
non accessibile
Descrizione: Tesi Raffone Pierluigi
Dimensione
79.07 MB
Formato
Adobe PDF
|
79.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/131509