Nowadays, quantum computing and quantum cryptography are considerably important areas in the scientific research community. In particular, quantum key distribution (QKD) has attracted a lot of interest since its first proposal in 1984. Being based on the polarization of photons sent through optical fibers, a QKD system needs single-photon detectors able to operate in the near infrared region (0.9-1.7 µm) with high count rates (> 100 Mcounts/s). At the time being, the only feasible solution for developing a compact and widespread system is based on InGaAs/InP SPADs. However, they are characterized by a high dark count rate and a strong afterpulsing effect. In order to limit the afterpulsing probability for reaching high count rate, a new gating technique has been recently adopted, based on sine waves at gigahertz frequencies. These high-speed waveforms quickly turn off the detector at every cycle, thus reducing the total charge that flows into the device and so the afterpulsing probability. Still, a capacitive feedthrough persists at the readout node and it may overcome the useful signal. A proper readout circuit and a feedback control loop are used to reject it. This thesis work aims to design a compact module for InGaAs/InP SPAD with sinusoidal gating and high count rate, mainly intended for QKD applications. In particular, the following blocks have been developed: i) a section able to generate sinusoidal waveforms with amplitude from 1 V to 7 V in the 900 MHz-1400 MHz frequency range; ii) a fast readout circuit for the avalanche discrimination characterized by low time jitter (< 10 ps); iii) a feedback circuit able to monitor and suppress the capacitive feedthrough. As a first step, the final system has been experimentally characterized using a silicon CMOS SPAD.
Oggigiorno, i sistemi di elaborazione quantistici e la crittografia quantistica sono ambiti di ricerca di notevole importanza nella comunità scientifica. In particolare, la tecnica QKD (Quantum Key Distribution) ha attratto molta attenzione fin dalla sua prima apparizione nel 1984. Basandosi sullo stato di polarizzazione di fotoni inviati in fibra, un sistema a QKD necessita di rivelatori di singoli fotoni capaci di operare nella regione del vicino infrarosso (0.9-1.7 µm) con alti tassi di conteggio (> 100 Mcounts/s). Attualmente, l’unica soluzione per un sistema compatto e su larga scala consiste nell’adozione di SPAD in InGaAs/InP, che sono tuttavia caratterizzati da fenomeni di rumore e afterpulsing molto pronunciati. Al fine di limitare la probabilità di afterpulsing per raggiungere un tasso di conteggio elevato, negli ultimi anni è stata introdotta una tecnica di abilitazione basata su onde sinusoidali ad alta frequenza, che spengono velocemente il fotorivelatore ad ogni ciclo, limitando la carica circolante nel dispositivo e riducendo di conseguenza la probabilità di afterpulsing. Permane tuttavia al nodo di lettura un feedthrough capacitivo che domina il segnale utile, e che quindi va eliminato tramite un dedicato circuito di lettura e retroazione. In questo lavoro di tesi è stato sviluppato un modulo compatto per l’abilitazione sinusoidale di SPAD in InGaAs/InP con alti tassi di conteggio e destinato all’uso in applicazioni di crittografia quantistica. In particolare, si è progettato e realizzato: i) un circuito in grado di generare onde sinusoidali ampie da 1 a 7 V in una banda compresa tra 900 e 1400 MHz; ii) un sistema di lettura del segnale di valanga a basso jitter (< 10ps) ed elevato throughput; iii) un sistema retroazionato capace di monitorare e sopprimere il contributo di feedthrough capacitivo. Come primo passo, il sistema finale è stato poi caratterizzato sperimentalmente con uno SPAD in silicio realizzato in tecnologia standard CMOS.
Compact high-throughput InGaAs/InP SPAD module operated at gigahertz repetition rate
OTTAVIANI, STEFANO
2015/2016
Abstract
Nowadays, quantum computing and quantum cryptography are considerably important areas in the scientific research community. In particular, quantum key distribution (QKD) has attracted a lot of interest since its first proposal in 1984. Being based on the polarization of photons sent through optical fibers, a QKD system needs single-photon detectors able to operate in the near infrared region (0.9-1.7 µm) with high count rates (> 100 Mcounts/s). At the time being, the only feasible solution for developing a compact and widespread system is based on InGaAs/InP SPADs. However, they are characterized by a high dark count rate and a strong afterpulsing effect. In order to limit the afterpulsing probability for reaching high count rate, a new gating technique has been recently adopted, based on sine waves at gigahertz frequencies. These high-speed waveforms quickly turn off the detector at every cycle, thus reducing the total charge that flows into the device and so the afterpulsing probability. Still, a capacitive feedthrough persists at the readout node and it may overcome the useful signal. A proper readout circuit and a feedback control loop are used to reject it. This thesis work aims to design a compact module for InGaAs/InP SPAD with sinusoidal gating and high count rate, mainly intended for QKD applications. In particular, the following blocks have been developed: i) a section able to generate sinusoidal waveforms with amplitude from 1 V to 7 V in the 900 MHz-1400 MHz frequency range; ii) a fast readout circuit for the avalanche discrimination characterized by low time jitter (< 10 ps); iii) a feedback circuit able to monitor and suppress the capacitive feedthrough. As a first step, the final system has been experimentally characterized using a silicon CMOS SPAD.File | Dimensione | Formato | |
---|---|---|---|
2016_12_Ottaviani.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
5.97 MB
Formato
Adobe PDF
|
5.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/131541