The present thesis work, in the field of astronomical adaptive optics, aims the goal of achieving a photocontrolled deformable mirror (PCDM) prototype. Specifically, the deformable mirrors, and the state of the art about them, as correctors of the aberrations introduced by the atmosphere were analyzed. Among them, electrostatic membrane mirrors, with actuation induced by the light, were considered. Up to now, PCDM exploiting inorganic photoconductors were developed. After explaining the organic photoconduction phenomenon, it was decided to evaluate the possibility to use organic photoconductor in PCDM development. Starting from xerographic and organic photovoltaic applications, a system that works with a material for the charge photogeneration and a material for the charge transport has been studied. By means of the bulk heterojunction technology, the goal was to obtain an accumulation of charges on the surface of the photoconductive layer and to generate the electrostatic force required for the deformation of the mirror. As charge generator material the system poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester (P3HT: PCBM) was chosen. As material for the charge transport tri-p-tolylamine (TAA) and 4,4′,4′′-Tris[phenyl(m-tolyl)amino]triphenylamine (m-MTDATA) were compared. An electric model that would explain the photogenerative and conductive phenomena in the device has been proposed, identifying strategies for the development. Thin film based on the selected materials were characterized in terms of electrical properties with current-voltage measurement (I-V Sweep) at different degrees of lighting, and with pulsed light tests. Through these characterizations, the best material for the charge transport, the composition of the photoconductive layer, and the best constructive strategy were chosen. Finally with the selected photoconductive layer, an organic PCDM prototype has been realized, which was optically characterized, demonstrating its use as light-valve, providing results for use in the field of deformable mirrors.
Il presente lavoro di tesi, nell’ambito dell’ottica adattiva astronomica, si è posto l’obbiettivo di realizzare un prototipo di specchio deformabile fotocontrollato (PCDM). Nello specifico sono stati analizzati gli specchi deformabili come correttori delle aberrazioni introdotte dall’atmosfera, e lo stato dell’arte che li riguarda. Tra questi, si sono considerati gli specchi a membrana ad attuazione elettrostatica, indotta dall’illuminazione. Ad oggi sono presenti PCDM di questo tipo, che sfruttano fotoconduttori inorganici. Dopo aver illustrato il fenomeno della fotoconduzione organica, si è deciso di valutare la possibilità dell’utilizzo di fotoconduttori organici per lo sviluppo dei dispositivi. Partendo dalle applicazioni xerografiche e fotovoltaiche organiche, è stato individuato un sistema che sfrutti un materiale per la fotogenerazione delle cariche e un materiale per il trasporto delle cariche, utilizzando la struttura a eterogiunzione di bulk, con l’obbiettivo di ottenere un accumulo di cariche sulla superficie dello strato fotoconduttore, per generare la forza elettrostatica necessaria per il movimento dello specchio. Come materiale generatore di carica è stato scelto il sistema poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester (P3HT: PCBM), ampiamente utilizzato in applicazioni che sfruttano la fotoconduzione organica. Come materiale per il trasporto di carica sono stati confrontati tri-p-tolylamine (TAA) e 4,4′,4′′-Tris[phenyl(m-tolyl)amino]triphenylamine (m-MTDATA). È stato proposto un modello elettrico che spiegasse i fenomeni fotogenerativi e conduttivi nel dispositivo, individuando le strategie per orientare lo sviluppo dello stesso. Film sottili realizzati con questi materiali sono stati caratterizzati elettricamente con misure di corrente-tensione (I-V sweep) a diversi gradi di illuminazione, e con prove con luce pulsata. Tramite le caratterizzazioni svolte, è stato scelto il migliore materiale adibito al trasporto delle cariche, la composizione dello strato fotoconduttore e la migliore strategia costruttiva. Infine con lo strato fotoconduttore scelto, è stato realizzato un prototipo di PCDM organico, il quale è stato caratterizzato otticamente, e ha dimostrato il funzionamento come light valve, fornendo risultati promettenti per l’utilizzo nel campo degli specchi deformabili.
Organic photoconductive materials for photocontrolled deformable mirror
BARATTO, MATTEO
2015/2016
Abstract
The present thesis work, in the field of astronomical adaptive optics, aims the goal of achieving a photocontrolled deformable mirror (PCDM) prototype. Specifically, the deformable mirrors, and the state of the art about them, as correctors of the aberrations introduced by the atmosphere were analyzed. Among them, electrostatic membrane mirrors, with actuation induced by the light, were considered. Up to now, PCDM exploiting inorganic photoconductors were developed. After explaining the organic photoconduction phenomenon, it was decided to evaluate the possibility to use organic photoconductor in PCDM development. Starting from xerographic and organic photovoltaic applications, a system that works with a material for the charge photogeneration and a material for the charge transport has been studied. By means of the bulk heterojunction technology, the goal was to obtain an accumulation of charges on the surface of the photoconductive layer and to generate the electrostatic force required for the deformation of the mirror. As charge generator material the system poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester (P3HT: PCBM) was chosen. As material for the charge transport tri-p-tolylamine (TAA) and 4,4′,4′′-Tris[phenyl(m-tolyl)amino]triphenylamine (m-MTDATA) were compared. An electric model that would explain the photogenerative and conductive phenomena in the device has been proposed, identifying strategies for the development. Thin film based on the selected materials were characterized in terms of electrical properties with current-voltage measurement (I-V Sweep) at different degrees of lighting, and with pulsed light tests. Through these characterizations, the best material for the charge transport, the composition of the photoconductive layer, and the best constructive strategy were chosen. Finally with the selected photoconductive layer, an organic PCDM prototype has been realized, which was optically characterized, demonstrating its use as light-valve, providing results for use in the field of deformable mirrors.File | Dimensione | Formato | |
---|---|---|---|
Testo tesi.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
5.35 MB
Formato
Adobe PDF
|
5.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/131835