Great variety of engineering applications that required high performance, especially related to structural integrity as a combination of high strength and stiffness, are based on composite materials. This kind of properties are conferred due to the presence of different phases constituting the material. Great efforts, at both the scientific and industrial research level, are spent to better understand the behavior of these materials and develop more and more advanced applications. In the present work, the behavior of CFRP laminates subjected to different bending load has been investigated. An experimental program aimed to a mechanical characterization of a CFRP multilayer composite material under flexural load, therefore have been carried out. In particular, are performed Three Point Bending Test (TPBT), Short Beam Test (SBT), Low Velocity Impact (LVI), Compression After Impact (CAI). The tests have to be defined in the light of a future exploitation of the investigated material for ballistic applications. Therefore, not only basic material properties, useful to develop FEM models have to be determined, but also data concerning the residual integrity of damaged material could be of interest. However, the main target remains to define data regarding the mechanical properties of the material (with special focus on the constituents) in order to exploit such data in further FEM analyses. In line with experimental test, numerical models are developed aimed to characterize the mechanical behavior of a CFRP multilayer composite material under three point flexural tests. Data related on mechanical properties of the material, obtained from experimental tests, are inserted in the model, in order to compare the experimental results obtained with the numerical ones, to achieve a complete study about the worked material. The target is to build a numerical model as real as possible that overlap and so confirm the experimental results. Although, since the approach used is “Continuum Shell” only intralaminar damage is clearly examined, whereas the delamination, so interlaminar damage, is difficult to be predicted with this strategy. In this case “Cohesive Surfaces” approach can be better. The chosen program for FEM modeling is ABAQUS/Explicit. Finally, has been developed a microstructural characterization of the material through Optical Microscopy and SEM (Scanning Electron Microscopy) in order to study the kind and dimension of damage present in a specimen previously subjected to CAI. As low speed impact and compression after impact loading conditions are to be closely linked to bending tests, it was decided to focus the investigation on already available damaged specimens. All this has been developed in order to get a comprehensive investigation on the mechanical behavior of CFRP under different load conditions.
Una grande varietà di applicazioni ingegneristiche che richiedono alte prestazioni, specialmente per quanto riguarda l’integrità strutturale, ottenuta dalla combinazione di elevata resistenza e rigidità, sono basate sull’utilizzo di materiali compositi. Queste proprietà vengono conferite al materiale dalla presenza di differenti fasi costituenti. Grandi sforzi, sia a livello di ricerca scientifica che di ricerca industriale, vengono spesi al fine di comprendere meglio il comportamento dei materiali compositi e di sviluppare applicazioni sempre più avanzate. Nel presente lavoro, l’obiettivo dell’analisi riguarda lo studio del comportamento meccanico di laminati CFRP sottoposti a diversi carichi di flessione. Per questo motivo viene sviluppato un programma sperimentale volto ad una caratterizzazione meccanica di un materiale composito CFRP multistrato sottoposto a carichi a flessione. In particolare sono state sviluppate prove di flessione in tre punti (TPBT), prove short beam (SBT), impatti a bassa velocità (LVI) e compressione post impatto (CAI). I test sono stati definiti in funzione di un futuro utilizzo delle proprietà del materiale analizzato per applicazioni balistiche. Pertanto, anche i dati riguardanti l'integrità strutturale residua di un materiale danneggiato risultano di interesse. L'obiettivo principale rimane però quello di estrapolare i dati relativi alle proprietà meccaniche del materiale per sfruttarli in successive analisi FEM. In linea con le prove sperimentali, vengono quindi sviluppati modelli numerici mirati a caratterizzare il comportamento meccanico di un materiale composito CFRP multistrato soggetto a flessione in tre punti. Pertanto, i dati relativi alle proprietà del materiale ottenuti da prove sperimentali, vengono inseriti nel modello, al fine di confrontare i risultati sperimentali con quelli numerici, con lo scopo di ottenere uno studio completo del materiale testato. L'obiettivo è quello di costruire un modello numerico il più vicino possibile al caso reale: i cui risultati si sovrappongano e quindi confermino quelli sperimentali precedentemente ottenuti. Dal momento che l'approccio utilizzato è quello “Continuum Shell” solo il danneggiamento di tipo intralaminare risulta ottenibile mentre la delaminazione, ovvero il danneggiamento di tipo interlaminare, è difficile da prevedere. In questo caso un approccio mediante le “Superfici Coesive” può produrre risultati migliori. Il programma scelto per la modellazione agli elementi finiti è ABAQUS/Explicit. Infine, è stata sviluppata una caratterizzazione microstrutturale del materiale attraverso microscopia ottica e SEM (Microscopia a scansione elettronica) al fine di studiare la tipologia e le dimensioni del danneggiamento presente nei campioni analizzati, precedentemente sottoposti a CAI. Poiché, gli impatti a bassa velocità e la compressione post impatto presentano condizioni di carico strettamente legate a quelle dei test a flessione, si è deciso di focalizzare l'indagine su provini danneggiati già disponibili. Tutto questo ha permesso di ottenere un'indagine completa relativa al comportamento meccanico di compositi CFRP soggetti a diverse condizioni di carico.
An experimental and numerical investigation on the damage induced by bending load on CFRP
BALDINI, TOMMASO
2015/2016
Abstract
Great variety of engineering applications that required high performance, especially related to structural integrity as a combination of high strength and stiffness, are based on composite materials. This kind of properties are conferred due to the presence of different phases constituting the material. Great efforts, at both the scientific and industrial research level, are spent to better understand the behavior of these materials and develop more and more advanced applications. In the present work, the behavior of CFRP laminates subjected to different bending load has been investigated. An experimental program aimed to a mechanical characterization of a CFRP multilayer composite material under flexural load, therefore have been carried out. In particular, are performed Three Point Bending Test (TPBT), Short Beam Test (SBT), Low Velocity Impact (LVI), Compression After Impact (CAI). The tests have to be defined in the light of a future exploitation of the investigated material for ballistic applications. Therefore, not only basic material properties, useful to develop FEM models have to be determined, but also data concerning the residual integrity of damaged material could be of interest. However, the main target remains to define data regarding the mechanical properties of the material (with special focus on the constituents) in order to exploit such data in further FEM analyses. In line with experimental test, numerical models are developed aimed to characterize the mechanical behavior of a CFRP multilayer composite material under three point flexural tests. Data related on mechanical properties of the material, obtained from experimental tests, are inserted in the model, in order to compare the experimental results obtained with the numerical ones, to achieve a complete study about the worked material. The target is to build a numerical model as real as possible that overlap and so confirm the experimental results. Although, since the approach used is “Continuum Shell” only intralaminar damage is clearly examined, whereas the delamination, so interlaminar damage, is difficult to be predicted with this strategy. In this case “Cohesive Surfaces” approach can be better. The chosen program for FEM modeling is ABAQUS/Explicit. Finally, has been developed a microstructural characterization of the material through Optical Microscopy and SEM (Scanning Electron Microscopy) in order to study the kind and dimension of damage present in a specimen previously subjected to CAI. As low speed impact and compression after impact loading conditions are to be closely linked to bending tests, it was decided to focus the investigation on already available damaged specimens. All this has been developed in order to get a comprehensive investigation on the mechanical behavior of CFRP under different load conditions.File | Dimensione | Formato | |
---|---|---|---|
2016_12_Baldini.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
12.45 MB
Formato
Adobe PDF
|
12.45 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/131852