The major objective of this thesis was to develop a mathematical model able to predict the sliding friction coefficient between rubber and metal surface in contact. This model was applied to have an estimate for the resistance offered by the Lip-seal of an automotive In-wheel motor. A detailed review of the most comprehensive studies in this less established field of rubber friction provided the basis for the thesis. Rubber’s particular mechanical behaviour due to its viscoelasticity and hysteresis was accounted by modelling its complex material modulus which is dependent on temperature and the excitation frequency of rubber. The formulation of a local friction law for a wide speed range of rubber and metal sliding was determined, with an emphasis on hysteresis friction mechanism. The metal surface was reproduced as a surface model with ideal peaks and multiple roughness orders. Moreover, the Lip seal mounting pressure was estimated by a finite element contact model. Finally a sensitivity analysis on the model output corresponding to individual inputs was judged to be in line with widely accepted and cited experimental trends. The model was validated by comparing the estimated output with the experimental data from the electric motor. Physically reasonable sets of model input parameters to give a best fit with experimental torque values were identified by minimizing an objective function and training a neural network.
L’obiettivo principale di questa tesi consiste nello sviluppo di un modello matematico in grado di stimare il coefficiente di attrito prodotto nel contatto tra un componente in gomma e una superficie in metallo. Il modello è stato utilizzato per predire la coppia resistente generata da una guarnizione radiale di un motore elettrico di tipo In-Wheel impiegato in campo automotive. Una preliminare e dettagliata analisi dei principali studi presenti in letteratura è stata fondamentale nella comprensione del fenomeno e nella stesura della tesi. Il particolare comportamento meccanico della gomma, dovuto alla natura isteretica e viscoelastica del materiale, è stato riprodotto impiegando un modulo elastico complesso, che dipende dalla temperatura e dalla frequenza di eccitazione della gomma. E’ stata formulata una legge di attrito locale valida in un ampio range di velocità di strisciamento, con particolare riferimento al meccanismo dell’attrito per isteresi. La superficie del metallo è stata approssimata con un modello di superficie ad asperità idealizzate e ordini di rugosità multipli. E stata inoltre realizzata un’ analisi ad elementi finiti che ha permesso di stimare la pressione di montaggio della guarnizione. L’analisi di sensitività svolta comparando l’output del modello rispetto alle variabili di ingresso è stata ritenuta coerente con i risultati sperimentali presenti nelle principali pubblicazioni in materia. Il modello è stato validato confrontando i valori di coppia stimata con i risultati ottenuti dai test sperimentali condotti sul motore elettrico. L’identificazione di un set ottimale di parametri di ingresso per il modello è stata quindi ottenuta minimizzando una funzione obiettivo e mediante l’utilizzo di una rete neurale.
Rubber lip seal friction modelling and validation with application to an automotive in-wheel motor
BHATIA, NARAYAN JATINDER;MISSAGLIA, ELIA
2015/2016
Abstract
The major objective of this thesis was to develop a mathematical model able to predict the sliding friction coefficient between rubber and metal surface in contact. This model was applied to have an estimate for the resistance offered by the Lip-seal of an automotive In-wheel motor. A detailed review of the most comprehensive studies in this less established field of rubber friction provided the basis for the thesis. Rubber’s particular mechanical behaviour due to its viscoelasticity and hysteresis was accounted by modelling its complex material modulus which is dependent on temperature and the excitation frequency of rubber. The formulation of a local friction law for a wide speed range of rubber and metal sliding was determined, with an emphasis on hysteresis friction mechanism. The metal surface was reproduced as a surface model with ideal peaks and multiple roughness orders. Moreover, the Lip seal mounting pressure was estimated by a finite element contact model. Finally a sensitivity analysis on the model output corresponding to individual inputs was judged to be in line with widely accepted and cited experimental trends. The model was validated by comparing the estimated output with the experimental data from the electric motor. Physically reasonable sets of model input parameters to give a best fit with experimental torque values were identified by minimizing an objective function and training a neural network.File | Dimensione | Formato | |
---|---|---|---|
2016_12_Bhatia_Missaglia.pdf
non accessibile
Descrizione: Thesis text
Dimensione
5.84 MB
Formato
Adobe PDF
|
5.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/132040