This PhD thesis work focused on the design of new liposomal and polymeric nanocarriers capable of crossing specific biological barriers. Depending on the application, the physicochemical characteristics of the nanocarriers were tuned in order to maximize barrier penetration and drug delivery at the specific site. Firstly, a new targeted therapy directed to treat podocyte-associated glomerular diseases in kidneys was developed, based on the use of new protein drug- loaded, engineered liposomes. The liposomal nanocarriers were able to retain the therapeutic proteins at the physiological temperature while release them with mild hyperthermia. These nanomaterials showed good therapeutic effects towards podocytes in standard 2D cell cultures as well as in a 3D podocyte–endothelial co-culture system, which was designed to mimic the glomerular filtration barrier in vitro. Surface decoration with peptides which have certain specificity for the glomerulus facilitated the selective cellular uptake of liposomal nanocarriers by the glomerular endothelial cells, rather than other endothelial cells. This glomeruli-targeted nanotherapeutic may represent a powerful new strategy for effective treatment of glomerular diseases. Secondly, a glioblastoma multiform-targeted therapy was developed, based on the use of degradable PLGA-PEG polymeric nanoparticles (PNPs) loaded with an anti-tumor drug (doxorubicin) and functionalised with chlorotoxin, a peptide reported to bind selectively to glioma cells. The engineered targeted PNPs offer the potential for delivering therapies directly to invasive brain cancer cells, thus improving the desired therapeutic effects while minimising unwanted toxicity. Preliminary in vitro cellular uptake and cytotoxicity studies suggested that further modification of the polymer structure may be necessary to control the release rate of the anti-tumor drug and improve cell targeting. Moreover, a combination strategy based on radiation therapy and chlorotoxin modified PNPs may have a great potential in strengthening the anti-tumor efficacy of chemotherapeutics towards glioblastoma multiform diseases.
Il lavoro di questa tesi di dottorato si è focalizzato sulla progettazione di nuovi liposomi e nanovettori polimerici capaci di attraversare specifiche barriere biologiche. A seconda dell’applicazione, le caratteristiche chimico fisiche dei nanovettori sono state ottimizzate in modo da massimizzare la penetrazione delle membrane e il rilascio del farmaco nel sito specifico di interesse. In primo luogo è stata sviluppata una nuova terapia per il trattamento di malattie del glomerulo renale associate al malfunzionamento dei podociti; questo approccio è basato sull’uso di una farmaco proteico incapsulato in liposomi ingegnerizzati. I liposomi sono stati capaci di trattenere le proteine terapeutiche a temperatura fisiologica e rilasciarle per mezzo di una ipertermia moderata. I nanomateriali hanno mostrato un buon effetto terapeutico sui podociti in colture standard 2D e in coculture 3D podociti-cellule endoteliali, sviluppate per simulare la barriera di filtrazione glomerulare in vitro. La decorazione superficiale con peptidi aventi una certa specificità per il glomerulo ha facilitato una selettiva internalizzazione dei nanovettori da parte delle cellule endoteliali glomerulari, quelle rispetto ad altre cellule endoteliali. Questi nanoterapici veicolati sul glomerulo potrebbero quindi rappresentare un’ottima strategia per un efficace trattamento di alcune malattie renali. Successivamente, è stata sviluppata una terapia diretta al glioblastoma multiforme, basata sull’uso di nanoparticelle polimeriche PLGA-PEG (PNP), caricate con un farmaco antitumorale (doxorubicina) e funzionalizzate con clorotossina, un peptide conosciuto per legarsi selettivamente alle cellule del glioma. Queste nanoparticelle ingegnerizzate hanno il potenziale per rilasciare chemoterapici direttamente sulle cellule cancerogene invasive del cervello, aumentando quindi l’efficacia del trattamento e diminuendo gli effetti collaterali. Studi preliminari in vitro sull’internalizzazione cellulare e citotossicità hanno suggerito che una ulteriure modifica della struttura polimerica è necessaria per controllare la velocità di rilascio del farmaco e migliorare il targeting cellulare. Infine, una combinazione di radioterapia e nanoparticelle coniugate con clorotossina potrebbero avere un grosso potenziale nel rafforzare l’efficacia dei chemoterapici sul glioblastoma multiforme.
Design of liposomal and polymeric nanocarriers capable of crossing biological barriers
HUANG, XIAOYI
Abstract
This PhD thesis work focused on the design of new liposomal and polymeric nanocarriers capable of crossing specific biological barriers. Depending on the application, the physicochemical characteristics of the nanocarriers were tuned in order to maximize barrier penetration and drug delivery at the specific site. Firstly, a new targeted therapy directed to treat podocyte-associated glomerular diseases in kidneys was developed, based on the use of new protein drug- loaded, engineered liposomes. The liposomal nanocarriers were able to retain the therapeutic proteins at the physiological temperature while release them with mild hyperthermia. These nanomaterials showed good therapeutic effects towards podocytes in standard 2D cell cultures as well as in a 3D podocyte–endothelial co-culture system, which was designed to mimic the glomerular filtration barrier in vitro. Surface decoration with peptides which have certain specificity for the glomerulus facilitated the selective cellular uptake of liposomal nanocarriers by the glomerular endothelial cells, rather than other endothelial cells. This glomeruli-targeted nanotherapeutic may represent a powerful new strategy for effective treatment of glomerular diseases. Secondly, a glioblastoma multiform-targeted therapy was developed, based on the use of degradable PLGA-PEG polymeric nanoparticles (PNPs) loaded with an anti-tumor drug (doxorubicin) and functionalised with chlorotoxin, a peptide reported to bind selectively to glioma cells. The engineered targeted PNPs offer the potential for delivering therapies directly to invasive brain cancer cells, thus improving the desired therapeutic effects while minimising unwanted toxicity. Preliminary in vitro cellular uptake and cytotoxicity studies suggested that further modification of the polymer structure may be necessary to control the release rate of the anti-tumor drug and improve cell targeting. Moreover, a combination strategy based on radiation therapy and chlorotoxin modified PNPs may have a great potential in strengthening the anti-tumor efficacy of chemotherapeutics towards glioblastoma multiform diseases.File | Dimensione | Formato | |
---|---|---|---|
2017_02_PhD_Huang.pdf
non accessibile
Descrizione: Thesis text
Dimensione
5.93 MB
Formato
Adobe PDF
|
5.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/132074