A growing number of applications rely on single-photon detectors with high photon detection efficiency (PDE) in the near-infrared (NIR) range. In order to bring these applications out of the laboratories, single-photon detectors have to be compact, low power and rugged. Single-Photon Avalanche Diodes (SPADs), being solid-state devices, are the preferred solution for most applications. The aim of this doctoral work was to design novel NIR SPAD structures and to contribute to the advance of the state-of-the-art in the field. In the past decade, owing to the increasing interest in quantum information applications, such as quantum computing and quantum cryptography, there has been considerable effort to improve InGaAs/InP SPADs. Even so, noise and afterpulsing are still strong limitations that impair their wide-spread exploitation. A primary objective of my Ph.D. research was the development of low noise InGaAs/InP SPAD detectors and the reduction of afterpulsing effects through a novel mixed-quenching approach based on a monolithically integrated resistor. CMOS SPADs have recently become an emerging imaging technology for applications requiring both high sensitivity and high frame-rate in the visible and NIR range. However, a higher PDE, particularly in the NIR, is highly desirable for many growing markets, such as eye-safe time-of-flight laser ranging (LIDAR) and three dimensional imaging. The second research topic of this Ph.D. work was to design, in collaboration with STMicroelectronics, the first SPADs fabricated in a BCD (Bipolar, CMOS, DMOS) technology and to use the BCD platform to develop device solutions with the purpose of overcoming the intrinsic photon detection efficiency limitations of typical CMOS SPADs.
In un numero crescente di applicazioni sono necessari rivelatori di singoli fotoni ad elevata efficienza di rivelazione nel vicino infrarosso. Per portare queste applicazioni fuori dai laboratori di ricerca, i rivelatori di singoli fotoni devono essere compatti, robusti e avere bassa dissipazione di potenza. I Single-Photon Avalanche Diodes (SPAD), essendo dispositivi a stato solido, sono la soluzione preferibile per la maggior parte delle applicazioni. Lo scopo di questo lavoro di dottorato è stato quello di progettare nuove strutture SPAD per il vicino infrarosso e di contribuire al progresso dello stato dell’arte di questo tipo di rivelatori. Nell’ultimo decennio il forte interesse per applicazioni di “quantum information”, quali “quantum computing” e crittografia quantistica, ha stimolato lo sviluppo di rivelatori SPAD in InGaAs/InP sempre più performanti. Nonostante i progressi raggiunti, il rumore e l’afterpulsing sono ancora forti limitazioni che ostacolano l’impiego diffuso di tali rivelatori in contesti applicativi. Il primo obiettivo del mio dottorato di ricerca è stato lo sviluppo di rivelatori in InGaAs/InP a basso rumore e la riduzione degli effetti di afterpulsing attraverso un nuovo circuito di spegnimento della valanga di corrente, composto da un resistore integrato e un circuito esterno. Gli SPAD CMOS sono oggi una tecnologia emergente per applicazioni di tipo imaging, che richiedono sensibilità e frame-rate elevati nel visibile e vicino infrarosso. Tuttavia, una maggiore efficienza di rivelazione, in particolare nel vicino infrarosso, è altamente desiderabile per molti mercati in crescita, quali misure di distanza basate sul tempo di volo di singoli fotoni (LIDAR) e imaging tridimensionale. Il secondo tema di ricerca del mio dottorato è stato il progetto, in collaborazione con STMicroelectronics, dei primi dispositivi SPAD fabbricati in tecnologia BCD (Bipolar, CMOS, DMOS) e l’utilizzo di tale piattaforma per lo sviluppo di soluzioni volte a migliorare l’efficienza di rivelazione ottenibile nel vicino infrarosso.
Near-infrared single-photon detectors in emerging technologies
SANZARO, MIRKO
Abstract
A growing number of applications rely on single-photon detectors with high photon detection efficiency (PDE) in the near-infrared (NIR) range. In order to bring these applications out of the laboratories, single-photon detectors have to be compact, low power and rugged. Single-Photon Avalanche Diodes (SPADs), being solid-state devices, are the preferred solution for most applications. The aim of this doctoral work was to design novel NIR SPAD structures and to contribute to the advance of the state-of-the-art in the field. In the past decade, owing to the increasing interest in quantum information applications, such as quantum computing and quantum cryptography, there has been considerable effort to improve InGaAs/InP SPADs. Even so, noise and afterpulsing are still strong limitations that impair their wide-spread exploitation. A primary objective of my Ph.D. research was the development of low noise InGaAs/InP SPAD detectors and the reduction of afterpulsing effects through a novel mixed-quenching approach based on a monolithically integrated resistor. CMOS SPADs have recently become an emerging imaging technology for applications requiring both high sensitivity and high frame-rate in the visible and NIR range. However, a higher PDE, particularly in the NIR, is highly desirable for many growing markets, such as eye-safe time-of-flight laser ranging (LIDAR) and three dimensional imaging. The second research topic of this Ph.D. work was to design, in collaboration with STMicroelectronics, the first SPADs fabricated in a BCD (Bipolar, CMOS, DMOS) technology and to use the BCD platform to develop device solutions with the purpose of overcoming the intrinsic photon detection efficiency limitations of typical CMOS SPADs.File | Dimensione | Formato | |
---|---|---|---|
2017_02_PhD_Sanzaro_Mirko.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
7.76 MB
Formato
Adobe PDF
|
7.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/132085