The production of adherent metal coatings on polymers, especially fluoropolymers, is still an open issue for many applications. Many pre-treatment and metallization processes have been proposed which are either time/money consuming or limited to few specific polymers. In order to propose a versatile and simple process to face this issue, this thesis work is focused on the combination of open-air atmospheric-pressure plasma treatment and electrochemical processes for the metallization of advanced polymers. Plasma treatment, in particular, was performed to graft nitrogen-bearing functionalities that are known to coordinate with ionic palladium species in the activation bath. After plasma and activation with palladium, electroless copper metallization was usually performed. Also silver deposition was considered for specific applications. The manuscript is organized in four chapters: the first proposes a literature review regarding atmospheric plasma, electrochemical metallization and plasma treatment applied to electrochemical metallization of polymers. In the second chapter, the basic principles of the characterization techniques, used during this research activity, are described. In the third chapter the experimental procedures are defined and in the fourth chapter results are discussed. In particular, the discussion is organized according to the polymeric materials studied during experimentation. The same pattern is followed for each polymer, namely KETASPIRE® KT-820 PEEK, HALAR® 350LC ECTFE and SOLEF® 60512 (plaques) or 80000 (foams) PVDF. At first, parameters and characterization results of plasma treatment are discussed, afterwards outcomes of electrochemical metallization are described and finally the performances of the metallized polymer for the selected application are studied by means of specific tests. Looking at the big picture, it is possible to say that atmospheric plasma treatment is a suitable process to pre-treat polymeric materials with different chemical structures, e.g. aromatics (PEEK) and fluorinated (ECTFE and PVDF), in order to promote electroless metallization. Plasma treatment, especially if performed in the suitable conditions, was found to increase the surface tension of the polymeric substrates, mainly due to a marked increase of the its polar component. The process of hydrophobic recovery was studied and was found to be temperature dependent. A model was proposed that implied the building of master curves and the determination of the activation energy for the process of hydrophobic recovery. Chemical analysis of the surface revealed that plasma treatment leads to the grafting of nitrogenated and oxygenated functional groups; while morphological characterization pointed out that the surface roughness of the polymers is not affected by the preferred plasma conditions. It was found that plasma parameters need to be optimized depending on the chemical structure and on the form of the polymeric substrate, therefore allowing to obtain continuous and homogeneous copper deposits with good adhesion levels. Nucleation of copper was found to occur with no induction time on all the studied plasma-treated polymers. Moving to the specific applications, metal-coated ECTFE was proposed as flexible concentrator mirror. Spectral reflectance studies, performed on simplified samples revealed that good reflection properties can be obtained. Moreover the deposition of silver layers allowed improving the performances with respect to copper coated ECTFE samples. Two different applications were considered for copper coated PEEK films, depending on their thickness. Thermal and mechanical properties of thin, 6 µm thick, films were determined to quantify the effect of copper layers on thermal conduction/dissipation and apparent elastic modulus. This information was needed to validate the applicability of these samples as oscillating diaphragms for micro-speakers. Results revealed that thermal conduction/dissipation is highly increased by metallization and the effect on the mechanical properties can be tailored to obtain a good compromise. Secondly the applicability of thicker copper coated PEEK stripes as switches for circuit breakers was studied. In this case electrical and thermal responses of polymer-metal switches were studied, revealing that, modulating sample geometry, it is possible to control the actuation current and the thermal deflection. Finally PVDF foams were successfully coated with a continuous copper layer that allowed avoiding HF generation, which was met during flame resistance tests on bare PVDF foamed samples. The flame resistance test is part of the set of characterizations that are required, for new materials, from the aerospace industry.
La produzione di rivestimenti metallici aderenti di polimeri, in particolare fluoropolimeri, è ancora un problema aperto per molte applicazioni. Molti processi di pre-trattamento e di metallizzazione sono stati proposti, che sono dispendiosi o limitati a pochi polimeri specifici. Al fine di proporre un processo versatile e semplice per affrontare questo problema, questa tesi è focalizzata sulla combinazione del trattamento al plasma a pressione atmosferica e di processi elettrochimici per la metallizzazione di polimeri avanzati. Il trattamento al plasma, in particolare, è stato effettuato per innestare funzionalità azotate che sono note per coordinare con le specie ioniche del palladio nel bagno di attivazione. Dopo il plasma e l'attivazione con il palladio, depositi di rame sono stati di solito eseguiti per via electroless. Anche deposito di argento è stato considerato per applicazioni specifiche. Il manoscritto è organizzato in quattro capitoli: il primo propone una revisione della letteratura per quanto riguarda il plasma atmosferico, metallizzazione elettrochimica e trattamento al plasma applicato alla metallizzazione elettrochimica di polimeri. Nel secondo capitolo, i principi di base delle tecniche di caratterizzazione, utilizzate durante l'attività di ricerca, sono descritti. Nel terzo capitolo le procedure sperimentali sono definite e nel quarto capitolo sono discussi i risultati. In particolare, la discussione è organizzata secondo i materiali polimerici studiati durante la sperimentazione. Lo stesso modello è seguito per ogni polimero, cioè KETASPIRE® KT-820 PEEK, Halar® 350LC ECTFE e SOLEF® 60512 (placche) o 80000 (schiume) PVDF. In un primo momento, i parametri e risultati di caratterizzazione di trattamento al plasma sono discussi, poi gli esiti di metallizzazione elettrochimica sono descritti e infine le prestazioni del polimero metallizzato per l'applicazione selezionata vengono studiati mediante test specifici. Guardando il quadro generale, si può dire che il trattamento al plasma atmosferico è un processo adatto per il pretrattamento di materiali polimerici con strutture chimiche varie, ad esempio aromatici (PEEK) e fluorurati (ECTFE e PVDF), al fine di promuovere la metallizzazione elettrochimica. Il trattamento al plasma, soprattutto se eseguito nelle condizioni adatte, è stato utile per aumentare la tensione superficiale dei substrati polimerici, principalmente per un marcato aumento della sua componente polare. Il processo di recupero idrofobo è stato studiato ed è stato trovato essere dipendente dalla temperatura. Un modello è stato proposto che implicava la costruzione di curve master e la determinazione della energia di attivazione per il processo di recupero idrofobo. L'analisi chimica della superficie ha rivelato che il trattamento al plasma conduce l'innesto di gruppi funzionali azotati ed ossigenati; mentre la caratterizzazione morfologica ha sottolineato che la rugosità superficiale dei polimeri non è influenzata dalle condizioni di plasma preferite. Si è constatato che i parametri di plasma devono essere ottimizzati a seconda della struttura chimica e della forma del substrato polimerico, permettendo quindi di ottenere depositi di rame continui ed omogenei con buoni livelli di adesione. La nucleazione di rame è stata riscontrata senza tempo induzione su tutti i polimeri trattati al plasma studiati. Muovendosi verso le applicazioni specifiche, ECTFE rivestito di metallo è stato proposto come specchio concentratore solare flessibile. studi di riflettanza spettrale, effettuati su campioni semplificati, hanno rivelato che buone proprietà riflettenti possono essere ottenute. Inoltre la deposizione di strati di argento ha permesso di migliorare le prestazioni rispetto ai campioni ECTFE rivestiti di rame. Due diverse applicazioni sono state considerate per film di PEEK rivestiti di rame , a seconda dello spessore. Le proprietà termiche e meccaniche di film di spessore 6 micron sono state determinate per quantificare l'effetto di strati di rame sulla conduzione/dissipazione termica e sul modulo elastico apparente. Questa informazione è stata necessaria per convalidare l'applicabilità di questi campioni come diaframmi oscillanti per micro-altoparlanti. I risultati hanno rivelato che la conduzione termica / dissipazione aumenta notevolmente con la metallizzazione e l'effetto sulle proprietà meccaniche può essere adattato per ottenere un buon compromesso. In secondo luogo l'applicabilità di strisce di PEEK rivestito di rame come interruttori è stata studiata. In questo caso sono stati studiate le risposte elettriche e termiche di interruttori polimero-metallo, rivelando che, modulando la geometria del campione, è possibile controllare la corrente di azionamento e la deformazione termica. Infine schiume PVDF sono state rivestite con successo con uno strato di rame continuo che ha permesso di evitare la generazione di HF, che è occorso durante le prove di resistenza di fiamma su campioni espansi in PVDF non ricoperti di metallo. La prova di resistenza alla fiamma è parte della serie di caratterizzazioni che sono richieste, per nuovi materiali, nel settore aerospaziale.
An alternative metallization process of advanced polymers: development and applications
ORIANI, ANDREA VITTORIO
Abstract
The production of adherent metal coatings on polymers, especially fluoropolymers, is still an open issue for many applications. Many pre-treatment and metallization processes have been proposed which are either time/money consuming or limited to few specific polymers. In order to propose a versatile and simple process to face this issue, this thesis work is focused on the combination of open-air atmospheric-pressure plasma treatment and electrochemical processes for the metallization of advanced polymers. Plasma treatment, in particular, was performed to graft nitrogen-bearing functionalities that are known to coordinate with ionic palladium species in the activation bath. After plasma and activation with palladium, electroless copper metallization was usually performed. Also silver deposition was considered for specific applications. The manuscript is organized in four chapters: the first proposes a literature review regarding atmospheric plasma, electrochemical metallization and plasma treatment applied to electrochemical metallization of polymers. In the second chapter, the basic principles of the characterization techniques, used during this research activity, are described. In the third chapter the experimental procedures are defined and in the fourth chapter results are discussed. In particular, the discussion is organized according to the polymeric materials studied during experimentation. The same pattern is followed for each polymer, namely KETASPIRE® KT-820 PEEK, HALAR® 350LC ECTFE and SOLEF® 60512 (plaques) or 80000 (foams) PVDF. At first, parameters and characterization results of plasma treatment are discussed, afterwards outcomes of electrochemical metallization are described and finally the performances of the metallized polymer for the selected application are studied by means of specific tests. Looking at the big picture, it is possible to say that atmospheric plasma treatment is a suitable process to pre-treat polymeric materials with different chemical structures, e.g. aromatics (PEEK) and fluorinated (ECTFE and PVDF), in order to promote electroless metallization. Plasma treatment, especially if performed in the suitable conditions, was found to increase the surface tension of the polymeric substrates, mainly due to a marked increase of the its polar component. The process of hydrophobic recovery was studied and was found to be temperature dependent. A model was proposed that implied the building of master curves and the determination of the activation energy for the process of hydrophobic recovery. Chemical analysis of the surface revealed that plasma treatment leads to the grafting of nitrogenated and oxygenated functional groups; while morphological characterization pointed out that the surface roughness of the polymers is not affected by the preferred plasma conditions. It was found that plasma parameters need to be optimized depending on the chemical structure and on the form of the polymeric substrate, therefore allowing to obtain continuous and homogeneous copper deposits with good adhesion levels. Nucleation of copper was found to occur with no induction time on all the studied plasma-treated polymers. Moving to the specific applications, metal-coated ECTFE was proposed as flexible concentrator mirror. Spectral reflectance studies, performed on simplified samples revealed that good reflection properties can be obtained. Moreover the deposition of silver layers allowed improving the performances with respect to copper coated ECTFE samples. Two different applications were considered for copper coated PEEK films, depending on their thickness. Thermal and mechanical properties of thin, 6 µm thick, films were determined to quantify the effect of copper layers on thermal conduction/dissipation and apparent elastic modulus. This information was needed to validate the applicability of these samples as oscillating diaphragms for micro-speakers. Results revealed that thermal conduction/dissipation is highly increased by metallization and the effect on the mechanical properties can be tailored to obtain a good compromise. Secondly the applicability of thicker copper coated PEEK stripes as switches for circuit breakers was studied. In this case electrical and thermal responses of polymer-metal switches were studied, revealing that, modulating sample geometry, it is possible to control the actuation current and the thermal deflection. Finally PVDF foams were successfully coated with a continuous copper layer that allowed avoiding HF generation, which was met during flame resistance tests on bare PVDF foamed samples. The flame resistance test is part of the set of characterizations that are required, for new materials, from the aerospace industry.File | Dimensione | Formato | |
---|---|---|---|
Tesi Andrea Vittorio Oriani.pdf
Open Access dal 26/01/2020
Descrizione: Tesi
Dimensione
7.51 MB
Formato
Adobe PDF
|
7.51 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/132105