In the last decade, the ability to acquire high frame-rate (higher than standard video-rate) two- and three-dimensional videos of scenes with very faint illumination has become more and more important in many fields, such as ambient surveillance, road safety, identification of people and objects, gaming, biomedical imaging, and studies on materials physics. In particular, there is a growing interest in devices capable of acquiring high frame-rate 3D (i.e., distance-resolved) videos with measurement ranges up to some hundreds of meters, to be employed as sensors for completely autonomous vehicles. My Ph.D. research aimed at developing high-end cameras able to acquire such videos, both in 2D and 3D modes, based on the “direct Time-of-Flight” (ToF) technique and to deploy them in real scientific applications. The cameras are based on SPAD (Single-Photon Avalanche Diode) detectors which, thanks to their extreme sensitivity, make it possible to achieve both relatively high frame-rates (higher than standard video rates) and long measurement ranges (up to 100 m). The single-photon sensitivity offered by SPAD detectors also makes it possible to count each incoming photon and also to measure each photon’s ToF timing information, thus enabling the reconstruction of very faint and fast optical signals by means of the TCSPC (Time-Correlated Single-Photon Counting) technique, applied on each independent pixel. Such capability also allows to further exploit these SPAD cameras in different scientific fields, exploiting the utmost advantages of single-photon sensitivity, e.g. in all biological applications where low-power illumination is compulsory, in order not to damage the sample under study. Finally, these cameras have triggered important collaborations in quantum mechanics and quantum computing, thanks to the possibility to study the behavior of each individual detected photon in both 2D and time-domain with sub-nanosecond resolution.
Durante l’ultimo decennio, i sensori in grado di acquisire video 3D e 2D ad elevato frame-rate (superiore a qualche decina di fps) hanno acquisito un’importanza crescente in molti campi, ad esempio nella sorveglianza ambientale, nella sicurezza stradale, nell’identificazione di persone e oggetti, nel campo videoludico, in quello biomedico e in studi sulla fisica dei materiali. In particolare, la spinta innovativa è trainata principalmente dal settore automobilistico, che richiede sensori in grado di mappare scene tridimensionali con un frame-rate relativamente elevato e capaci di misurare distanze anche nell’ordine di alcune centinaia di metri, per lo sviluppo di automobili completamente autonome. La mia attività di ricerca è stata mirata allo sviluppo di camere in grado di acquisire tali video, sia in modalità 2D che 3D, basandosi sulla tecnica di misura del tempo di volo (direct Time of Flight) e di utilizzarle in applicazioni scientifiche. Le camere sviluppate sono basate su matrici di sensori SPAD (Single-Photon Avalanche Diode) che, grazie alla loro estrema sensitività, rendono possibile l’ottenimento contemporaneo di range di misura particolarmente lunghi (anche un centinaio di metri) e frame rate elevati (superiori al video rate standard). La sensibilità al singolo fotone offre, inoltre, la possibilità di misurare il tempo di volo di ciascun fotone, abilitando così la ricostruzione di segnali luminosi particolarmente deboli (a livello del singolo fotone) e veloci (con risoluzione inferiore al nanosecondo) grazie alla tecnica denominata TCSPC (Time-Correlated Single-Photon Counting), applicata indipendentemente su ciascun pixel. L’utilizzo di questa tecnica rende anche possibile l’impiego delle camere sviluppate in altri campi applicativi, sfruttando il potenziale dato dalla sensibilità al singolo fotone, ad esempio in applicazioni biologiche dove è richiesto di limitare la potenza di illuminazione per evitare di danneggiare il campione sotto analisi. Infine, le camere sviluppate hanno consentito importanti collaborazioni scientifiche nell’ambito della meccanica quantistica, grazie alla possibilità di studiare il comportamento e il tempo di arrivo di ciascun fotone rivelato, con risoluzione inferiore al nanosecondo.
Time-of-Flight CMOS single-photon cameras for high frame rate 2D imaging and 3D ranging
LUSSANA, RUDI
Abstract
In the last decade, the ability to acquire high frame-rate (higher than standard video-rate) two- and three-dimensional videos of scenes with very faint illumination has become more and more important in many fields, such as ambient surveillance, road safety, identification of people and objects, gaming, biomedical imaging, and studies on materials physics. In particular, there is a growing interest in devices capable of acquiring high frame-rate 3D (i.e., distance-resolved) videos with measurement ranges up to some hundreds of meters, to be employed as sensors for completely autonomous vehicles. My Ph.D. research aimed at developing high-end cameras able to acquire such videos, both in 2D and 3D modes, based on the “direct Time-of-Flight” (ToF) technique and to deploy them in real scientific applications. The cameras are based on SPAD (Single-Photon Avalanche Diode) detectors which, thanks to their extreme sensitivity, make it possible to achieve both relatively high frame-rates (higher than standard video rates) and long measurement ranges (up to 100 m). The single-photon sensitivity offered by SPAD detectors also makes it possible to count each incoming photon and also to measure each photon’s ToF timing information, thus enabling the reconstruction of very faint and fast optical signals by means of the TCSPC (Time-Correlated Single-Photon Counting) technique, applied on each independent pixel. Such capability also allows to further exploit these SPAD cameras in different scientific fields, exploiting the utmost advantages of single-photon sensitivity, e.g. in all biological applications where low-power illumination is compulsory, in order not to damage the sample under study. Finally, these cameras have triggered important collaborations in quantum mechanics and quantum computing, thanks to the possibility to study the behavior of each individual detected photon in both 2D and time-domain with sub-nanosecond resolution.File | Dimensione | Formato | |
---|---|---|---|
2017_02_PhD_Lussana.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
20.86 MB
Formato
Adobe PDF
|
20.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/132111