Molecular Communication (MC) is an enabling paradigm for the interconnection of future devices and networks in the biological environment, with applications ranging from bio-medicine to environmental monitoring and control. The engineering of biological circuits, which allows to manipulate the molecular information processing abilities of biological cells, is a candidate technology for the realization of MC- enabled devices. In this thesis, inspired by previous research on channel coding schemes for MC and biological circuits for cell communications, a reliable molecular communication system is designed. An encoder and modulator design for the transmission of cellular information through signaling molecules is proposed together with an analog biological decoder, both based on biological circuit compo- nents. In particular, a simple single parity-check coding scheme has been designed for which the decoder follows a soft input-soft output approach. Finally, a noise analysis of the MC channel has been conducted in order to understand how our biological circuits should change in a realistic scenario. Despite evident differences with classical electronics, biochemical simulation data of the resulting biological circuits for the encoding and decoding processes demonstrate very close performance to the ideal implementation, and validate the proposed approach for the future realization of MC components.

Le comunicazioni molecolari sono un paradigma per l’interconnessione di reti e dispositivi in ambiente biologico, con applicazioni che vanno dalla bio-medicina al controllo e monitoraggio dell’ambiente. La progettazione di circuiti biologici, che consente di manipolare le abilità di elaborazione delle informazioni molecolari delle cellule biologiche, per- mette di realizzare dispositivi per comunicazioni molecolari. In questo lavoro di tesi, ispirato da recenti ricerche sia su schemi di codifica di canale per comunicazioni molecolari che su circuiti biologici, si è realizzato un sistema di comunicazione molecolare affidabile. Si propone un progetto di un codificatore e modulatore di informazioni molecolari e di un decodificatore soft biologico, entrambi basati su circuiti biologici. Nello specifico, si è considerato un semplice schema di codifica a controllo di singola parità, per il quale lo stadio decodificatore segue un approccio ingresso soft-uscita soft. Infine è stata condotta un’analisi del rumore sul canale molecolare con l’obiettivo di capire come i circuiti biologici dovrebbero essere cambiati in uno scenario realistico. Nonos- tante evidenti differenze con l’elettronica classica, si notano prestazioni molto simili dai dati derivanti da simulazioni biochimiche, validando l’approccio proposto per future realizzazioni di componenti per comunicazioni molecolari.

Encoding and soft decoding in molecular communication based on biological circuits

MARCONE, ALESSIO
2015/2016

Abstract

Molecular Communication (MC) is an enabling paradigm for the interconnection of future devices and networks in the biological environment, with applications ranging from bio-medicine to environmental monitoring and control. The engineering of biological circuits, which allows to manipulate the molecular information processing abilities of biological cells, is a candidate technology for the realization of MC- enabled devices. In this thesis, inspired by previous research on channel coding schemes for MC and biological circuits for cell communications, a reliable molecular communication system is designed. An encoder and modulator design for the transmission of cellular information through signaling molecules is proposed together with an analog biological decoder, both based on biological circuit compo- nents. In particular, a simple single parity-check coding scheme has been designed for which the decoder follows a soft input-soft output approach. Finally, a noise analysis of the MC channel has been conducted in order to understand how our biological circuits should change in a realistic scenario. Despite evident differences with classical electronics, biochemical simulation data of the resulting biological circuits for the encoding and decoding processes demonstrate very close performance to the ideal implementation, and validate the proposed approach for the future realization of MC components.
PIEROBON, MASSIMILIANO
ING - Scuola di Ingegneria Industriale e dell'Informazione
21-dic-2016
2015/2016
Le comunicazioni molecolari sono un paradigma per l’interconnessione di reti e dispositivi in ambiente biologico, con applicazioni che vanno dalla bio-medicina al controllo e monitoraggio dell’ambiente. La progettazione di circuiti biologici, che consente di manipolare le abilità di elaborazione delle informazioni molecolari delle cellule biologiche, per- mette di realizzare dispositivi per comunicazioni molecolari. In questo lavoro di tesi, ispirato da recenti ricerche sia su schemi di codifica di canale per comunicazioni molecolari che su circuiti biologici, si è realizzato un sistema di comunicazione molecolare affidabile. Si propone un progetto di un codificatore e modulatore di informazioni molecolari e di un decodificatore soft biologico, entrambi basati su circuiti biologici. Nello specifico, si è considerato un semplice schema di codifica a controllo di singola parità, per il quale lo stadio decodificatore segue un approccio ingresso soft-uscita soft. Infine è stata condotta un’analisi del rumore sul canale molecolare con l’obiettivo di capire come i circuiti biologici dovrebbero essere cambiati in uno scenario realistico. Nonos- tante evidenti differenze con l’elettronica classica, si notano prestazioni molto simili dai dati derivanti da simulazioni biochimiche, validando l’approccio proposto per future realizzazioni di componenti per comunicazioni molecolari.
Tesi di laurea Magistrale
File allegati
File Dimensione Formato  
2016_12_Marcone_Alessio.pdf

accessibile in internet per tutti

Descrizione: Testo della tesi
Dimensione 3.17 MB
Formato Adobe PDF
3.17 MB Adobe PDF Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/132216