Nash equilibria and Aumann's correlated equilibria are the fundamental concepts of solutions for non-cooperative games. They are however, inadequate, if you allow the communication between players, as groups of players can enter into non-binding agreements and deviate from an initial agreement to improve their payoffs. Hence, the birth of many stable equilibrium concepts with respect to the deviations of player coalitions. In a general sense, you can consider the stability of an equilibrium with respect to all possible deviations from each coalition or only with respect to those self-enforcing (in turn stable in relation to sub-deviations improving and self-enforcing). This work stems from the need to analyze in detail the individual solution concepts proposed by different authors and to relate them to each other. The equilibria concepts presented are strong Nash equilibria (Aumann), coalition-proof Nash equilibria (Bernheim, Peleg, Whinston), strong correlated equilibria and coalition-proof correlated equilibria (Moreno, Wooders), coalition-proof correlated equilibria and direct coalition-proof correlated equilibria (Ray), interim strong correlated equilibria and interim coalition-proof correlated equilibria (Bloch, Dutta), strong communication equilibria and coalition-proof communication equilibria (Einy, Peleg). The analysis of the relationship between the different concepts can not be exhaustive for the considerable difficulty of applying the concepts of equilibrium. However, satisfactory results have been obtained in the case of 2x2 games. It presents an analysis of two games with three players, possible for the particular symmetry of the payoff.
Gli equilibri di Nash e gli equilibri correlati di Aumann sono i concetti fondamentali di soluzione per giochi non cooperativi. Risultano però inadeguati se si consente la comunicazione tra giocatori, poichè gruppi di giocatori possono stringere accordi non vincolanti e deviare da un equilibrio iniziale per migliorare i payoff. Da qui la nascita di molti concetti di equilibrio stabili rispetto alle deviazioni da parte di coalizioni di giocatori. In generale, si può richiedere la stabilità di un equilibrio rispetto a tutte le possibili deviazioni da parte di ogni coalizione o solamente rispetto a quelle self-enforcing (a loro volta stabili rispetto a sub-deviazioni improving e self-enforcing). Il presente lavoro nasce dall'esigenza di analizzare nel dettaglio i singoli concetti di soluzione proposti dai diversi autori e di metterli in relazione tra loro. Gli equilibri presentati sono gli equilibri di Nash forti (Aumann), gli equilibri di Nash coalition-proof (Bernheim, Peleg, Whinston), gli equilibri correlati forti e gli equilibri correlati coalition-proof (Moreno, Wooders), gli equilibri correlati coalition-proof e gli equilibri correlati coalition-proof diretti (Ray), gli interim strong correlated equilibria e gli interim coalition-proof correlated equilibria (Bloch, Dutta), gli strong communication equilibria ed i coalition-proof communication equilibria (Einy, Peleg). L'analisi delle relazioni non può essere esauriente per la notevole difficoltà dell'applicazione dei concetti di equilibrio. Sono stati tuttavia ottenuti risultati soddisfacenti nel caso di giochi 2x2. Si presenta l'analisi degli equilibri di due giochi con tre giocatori, possibile per la particolare simmetria dei payoff.
Equilibri e coalizioni
PICANO, MARIO
2015/2016
Abstract
Nash equilibria and Aumann's correlated equilibria are the fundamental concepts of solutions for non-cooperative games. They are however, inadequate, if you allow the communication between players, as groups of players can enter into non-binding agreements and deviate from an initial agreement to improve their payoffs. Hence, the birth of many stable equilibrium concepts with respect to the deviations of player coalitions. In a general sense, you can consider the stability of an equilibrium with respect to all possible deviations from each coalition or only with respect to those self-enforcing (in turn stable in relation to sub-deviations improving and self-enforcing). This work stems from the need to analyze in detail the individual solution concepts proposed by different authors and to relate them to each other. The equilibria concepts presented are strong Nash equilibria (Aumann), coalition-proof Nash equilibria (Bernheim, Peleg, Whinston), strong correlated equilibria and coalition-proof correlated equilibria (Moreno, Wooders), coalition-proof correlated equilibria and direct coalition-proof correlated equilibria (Ray), interim strong correlated equilibria and interim coalition-proof correlated equilibria (Bloch, Dutta), strong communication equilibria and coalition-proof communication equilibria (Einy, Peleg). The analysis of the relationship between the different concepts can not be exhaustive for the considerable difficulty of applying the concepts of equilibrium. However, satisfactory results have been obtained in the case of 2x2 games. It presents an analysis of two games with three players, possible for the particular symmetry of the payoff.File | Dimensione | Formato | |
---|---|---|---|
2016_12_Picano.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/132503