Fracture behaviour of novel acrylic thermoplastic resins to be used as matrices for composite materials was studied. These resins, one plain and one toughened with rubber, are suitable to prepare composite materials adopting a reactive processing technique such as infusion moulding, overcoming in this way the issues typical of thermoplastic composites production. The matrices were investigated at small strains, yield and fracture, taking into account the influence of displacement rate and temperature on the mechanical response. Small strain behaviour was investigated with Dynamic Mechanical Analysis in a three-point bending configuration, adopting the time temperature equivalence postulate to reduce data obtained from tests conducted at different temperatures to one single reference temperature. Uniaxial tensile tests were performed to investigate yielding behaviour while fracture was studied with Double Torsion and Double Cantilever Beam techniques for matrices and composites respectively. In all cases, tests were conducted at different displacement rates and temperatures and the time temperature was applied so as to obtain fracture toughness vs. crack propagation speed and yield stress vs. time to yield master curves. The results from fracture tests showed that Williams’ viscoelastic fracture theory was suitable to predict fracture toughness dependence on crack propagation speed in the case of the plain resin, while in the case of the toughened resin a dependence opposite to that expected was found. This trend was attributed to different deformation mechanisms occurring at the crack tip at different conditions of strain rate and temperature. The process zone ahead the crack tip was then studied more in depth adopting Single Edge Notched Bending configuration and performing Digital Image Correlation analysis. Results showed that, concerning the plain resin, the size of the process zone was approximately constant with respect to the temperature. The results obtained for the toughened resin on the other hand, confirmed that the size of the process zone was actually different at different temperatures. The damage mechanisms in the toughened resin were investigated studying the changes in volume occurring during tensile tests at different conditions of temperature and displacement rate. A change of mechanism at different testing conditions was found. Fracture behaviour of the toughened resin was also studied in double notched four-point bending configuration from which a fully developed yet intact process zone at the crack tip can be obtained. The optical observation of the process zone at the crack tip obtained in different conditions of temperature and displacement rate confirmed the change in the damage mechanisms. This was associated with different amounts of energy dissipated thus explaining the trend observed in the fracture toughness vs. crack propagation speed curve for the toughened resin. Concerning the fracture behaviour of the composites, in order to better understand the transfer of toughness from matrix to composites, both the crack initiation and propagation stages were analysed. At crack initiation the toughening contribution of the fibres is limited, compared to that during crack propagation, and therefore the main fracture toughness contribution is given by the matrix. It was found that in the case of the plain matrix based composites the fracture toughness was higher than that of the matrix, while in the case of the toughened matrix based composites it was smaller. This result can reasonably be explained with the physical constraint induced by the presence of the fibres on the development of the process zone ahead the crack tip in the case of the toughened composites. In the case of the plain matrix, in which the dimensions of the process zone are smaller, the matrix toughness seems to be fully transferred to the composite. During the propagation stage, it was found that the fracture toughness was higher than that of the relevant matrix, for both matrices. The additional toughening effect given by the fibres was found to be dependent on crack propagation speed, probably due to time dependent matrix-fibre interfacial strength.
Il comportamento a frattura di resine acriliche termoplastiche di recente sviluppo da impiegare come matrici in materiali composite è stato studiato. Le resine in questione, una tal quale e una tenacizzata con gomma, possono essere impiegate per produrre materiali composite con un processo di tipo reattivo come ad esempio l’infusione, andando in questo a modo a risolvere tutte le problematiche tipiche della fabbricazione di materiali compositi a matrice termoplastica. Le matrici sono state studiate a piccole deformazioni, a snervamento e a frattura considerando l’effetto della velocità di sollecitazione e della temperatura sulla risposta meccanica del materiale. Il comportamento a piccole deformazioni è stato investigato tramite analisi dinamico-meccanica in configurazione di flessione a tre punti, facendo ricorso al postulato di equivalenza di tempo e temperatura per traslare i risultati ottenuti a diverse temperature. Il comportamento a snervamento è stato studiato mediante test di trazione uniassiale mentre la per quanto riguarda la frattura sono state impiegate le configurazioni di prova di doppia torsione e doppia trave incastrata rispettivamente per le matrici e i composite. Nei vari casi, i test sono stati condotti a varie temperature e velocità di spostamento e, applicando l’equivalenza di tempo e temperature si sono ottenute curve maestre di tenacità a frattura in funzione della velocità di propagazione della cricca e di sforzo di snervamento in funzione del tempo di snervamento. I risultati ottenuti dalle prove di frattura hanno evidenziato l’applicabilità della teoria della frattura viscoelastica di Williams nel prevedere la dipendenza della tenacità a frattura dalla velocità di propagazione della cricca per quanto riguarda la resina tal quale, mentre nel caso della resina tenacizzata è stata ottenuta una dipendenza opposta a quella attesa. La forma della curva è stata ritenuta dovuta ai differenti meccanismi di deformazione agenti di fronte all’apice della cricca nelle diverse condizioni di velocità e temperatura. La zona di processo davanti l’apice della cricca è stata quindi studiata nel dettaglio con l’analisi di correlazione digitale delle immagini in configurazione di flessione a tre punti con singolo intaglio. I risultati hanno evidenziato come nel caso della resina tal quale la zona di processo avesse sempre le stesse dimensioni al variare della temperature. Nel caso della resina tenacizzata si è visto come la zona di processo variasse in dimensioni al variare della temperatura. I meccanismi di danneggiamento della resina tenacizzata sono stati quindi studiati andando a misurare le variazioni di volume nel material a differenti velocità di spostamento e a differenti temperature. È stato verificato un cambio nei meccanismi agenti. Il comportamento a frattura della resina tenacizzata è stato ulteriormente studiato utilizzando la configurazione di prova di flessione a quattro punti con doppio intaglio grazie alla quale si possono ottenere zone di processo completamente sviluppate davanti all’apice della cricca. Osservando le zone di processo ottenute in differenti condizioni di velocità di spostamento e di temperatura è stato effettivamente riscontrato un cambio di meccanismo di danneggiamento. Questo cambio di meccanismo è accompagnato da una variazione di energia dissipata e quindi in questo modo è possibile spiegare la dipendenza della tenacità a frattura rispetto alla velocità di propagazione della cricca ottenuta per la resina tenacizzata. Per quanto riguarda il comportamento a frattura dei composite, si sono studiate sia la fase di innesco che di propagazione della cricca, in modo da poter comprendere meglio il trasferimento di tenacità dalla matrice al composito. All’innesco il contributo tenacizzante delle fibre è molto limitato rispetto alla fase di propagazione della cricca, quindi il maggior contributo alla tenacità a frattura è dovuto alla matrice. Nel caso dei composite realizzati con la resina tal quale la tenacità era più elevata di quella della matrice mentre nel caso della resina tenacizzata il composito è risultato meno tenace della matrice. Questo risultato può essere spiegato con l’effetto di confinamento indotto dalle fibre sulla zona di processo che, nel caso della resina tenacizzata, risulta essere più grande. Nel caso della matrice tal quale la zona di processo è piccola, la tenacità della matrice è completamente trasferita nel composito. Durante la fase di propagazione della cricca la tenacità a frattura dei composite è risultata più alta di quella delle matrici, in entrambi i casi. Il contributo tenacizzante dovuto alle fibre è risultato essere dipendente dalla velocità di propagazione della cricca, probabilmente a causa della dipendenza dal tempo della resistenza interfacciale fibra-matrice.
Fracture behaviour of thermoplastic acrylic resins and their relevant unidirectional carbon fibre composites: rate and temperature effects
PINI, TOMMASO
Abstract
Fracture behaviour of novel acrylic thermoplastic resins to be used as matrices for composite materials was studied. These resins, one plain and one toughened with rubber, are suitable to prepare composite materials adopting a reactive processing technique such as infusion moulding, overcoming in this way the issues typical of thermoplastic composites production. The matrices were investigated at small strains, yield and fracture, taking into account the influence of displacement rate and temperature on the mechanical response. Small strain behaviour was investigated with Dynamic Mechanical Analysis in a three-point bending configuration, adopting the time temperature equivalence postulate to reduce data obtained from tests conducted at different temperatures to one single reference temperature. Uniaxial tensile tests were performed to investigate yielding behaviour while fracture was studied with Double Torsion and Double Cantilever Beam techniques for matrices and composites respectively. In all cases, tests were conducted at different displacement rates and temperatures and the time temperature was applied so as to obtain fracture toughness vs. crack propagation speed and yield stress vs. time to yield master curves. The results from fracture tests showed that Williams’ viscoelastic fracture theory was suitable to predict fracture toughness dependence on crack propagation speed in the case of the plain resin, while in the case of the toughened resin a dependence opposite to that expected was found. This trend was attributed to different deformation mechanisms occurring at the crack tip at different conditions of strain rate and temperature. The process zone ahead the crack tip was then studied more in depth adopting Single Edge Notched Bending configuration and performing Digital Image Correlation analysis. Results showed that, concerning the plain resin, the size of the process zone was approximately constant with respect to the temperature. The results obtained for the toughened resin on the other hand, confirmed that the size of the process zone was actually different at different temperatures. The damage mechanisms in the toughened resin were investigated studying the changes in volume occurring during tensile tests at different conditions of temperature and displacement rate. A change of mechanism at different testing conditions was found. Fracture behaviour of the toughened resin was also studied in double notched four-point bending configuration from which a fully developed yet intact process zone at the crack tip can be obtained. The optical observation of the process zone at the crack tip obtained in different conditions of temperature and displacement rate confirmed the change in the damage mechanisms. This was associated with different amounts of energy dissipated thus explaining the trend observed in the fracture toughness vs. crack propagation speed curve for the toughened resin. Concerning the fracture behaviour of the composites, in order to better understand the transfer of toughness from matrix to composites, both the crack initiation and propagation stages were analysed. At crack initiation the toughening contribution of the fibres is limited, compared to that during crack propagation, and therefore the main fracture toughness contribution is given by the matrix. It was found that in the case of the plain matrix based composites the fracture toughness was higher than that of the matrix, while in the case of the toughened matrix based composites it was smaller. This result can reasonably be explained with the physical constraint induced by the presence of the fibres on the development of the process zone ahead the crack tip in the case of the toughened composites. In the case of the plain matrix, in which the dimensions of the process zone are smaller, the matrix toughness seems to be fully transferred to the composite. During the propagation stage, it was found that the fracture toughness was higher than that of the relevant matrix, for both matrices. The additional toughening effect given by the fibres was found to be dependent on crack propagation speed, probably due to time dependent matrix-fibre interfacial strength.File | Dimensione | Formato | |
---|---|---|---|
finale 21 feb.pdf
accessibile in internet per tutti
Descrizione: Tesi
Dimensione
8.67 MB
Formato
Adobe PDF
|
8.67 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/132680