More than 5000 naturally occurring halogenated compounds have been discovered up to date. Halogenation usually occurs at the periphery of molecules and is a minimal structural modification. However, it can induce deep changes in the molecular properties because of the peculiar chemical features of halogen atoms. Among these features, their tendency to function as electrophilic species has recently attracted wide interest. In particular, halogen atoms may behave as donors of halogen bonding (XB), which is a strong, specific, and directional noncovalent interaction. This thesis highlights the potential role of XB in the fine tuning of self-assembly involving biomolecules containing halogenated amino acids. The first part of the thesis describes how halogenation improves the self-assembly of a well-known phenylalanine-based organic gelator: N-Fmoc-Phe. The hydrogel formation ability and properties of monohalogenated derivatives of N-Fmoc-4-X-Phe (X = F, Cl, Br, I) has been related for the first time to halogen atom polarizability, i.e., the propensity to function as XB-donor. In fact, iodinated and brominated derivatives were found to form the strongest gels, and the XB occurrence was confirmed by single crystal structure analysis. The second part of the thesis shows the impact of halogenation on the self-assembly behavior of a pentapeptide. The segment KLVFF, core sequence of the amyloid beta (Aβ) protein, has been modified at the para position of the phenylalanine residues obtaining seven different halogenated derivatives. It has been found that the nature of the halogen atoms, their number and position in the sequence affect the peptide nanostructures obtained in solution. By single point mutation, i.e., halogen for hydrogen replacement, we could control the selective obtainment of four various nanostructures. Single crystal X-ray analysis demonstrated the potential role of XB in controlling the self-assembly of these kind of halogenated peptides. Our findings demonstrate for the first time XB as a new tool to carefully design peptide nanostructures. In a more biological context, these results may also shed new light on the impact of halogenation in vivo and diseases thereof, as a consequence of oxidative stress mechanisms. These studies were corroborated by extensive crystal structure determinations, which is rather unusual for amyloidogenic peptides. This may be related to the presence of halogen atoms in the sequences, which promotes peptide crystallization along with phase determination. These crystal structures confirm the overall features of the amyloid cross-β spine, showing in detail the key noncovalent interactions driving the self-assembly of the peptides. The obtained crystal structures may contribute to further enlighten the amyloidogenic self-assembly of the widely studied KLVFF segment and related sequences.
Ad oggi più di 5000 composti alogenati sono stati scoperti in natura. L'alogenazione nelle molecole di solito si verifica in posizioni periferiche ed è una modifica strutturale minima. Tuttavia, può indurre profondi cambiamenti nelle proprietà molecolari a causa delle caratteristiche chimiche peculiari degli alogeni. Tra queste caratteristiche, la loro tendenza ad agire come specie elettrofile ha recentemente attirato grande interesse. In particolare, gli alogeni possono comportarsi come donatori di legame ad alogeno (XB), che è un'interazione forte, specifica e direzionale non covalente. Questa tesi mette in evidenza il ruolo potenziale del legame ad alogeno nella messa a punto di processi di auto-assemblaggio di biomolecole contenenti aminoacidi alogenati. La prima parte della tesi descrive come l'alogenazione migliora l'auto-assemblaggio di un noto gelator organico basato sull'aminoacido fenilalanina: N-Fmoc-Phe. La capacità di formare gel e le proprietà di derivati mono-alogenati di N-Fmoc-4-X-Phe (X = F, Cl, Br, I) è stata correlata per la prima volta alla polarizzabilità degli alogeni, cioè la propensione ad agire come donatore di XB. Infatti, iodio- e bromo- derivati si sono rivelati essere i composti che formano i gel più forti, e la presenza di XB è stata confermata dalle strutture cristalline. La seconda parte della tesi mostra l'impatto dell'alogenazione sull'auto-assemblaggio di un pentapeptide. Il segmento KLVFF, sequenza chiave della proteina beta-amiloide, è stato modificato in posizione para dei residui di fenilalanina ottenendo sette diversi derivati alogenati. Si è trovato che la natura degli alogeni, il loro numero e la loro posizione nella sequenza influisce sulle nanostrutture ottenute in soluzione. Attraverso una mutazione puntuale, cioè inserire un alogeno al posto di un atomo di idrogeno, è possibile controllare l'ottenimento selettivo di quattro diverse nanostrutture. Le analisi ai raggi X su cristallo singolo hanno dimostrato il ruolo potenziale di XB nel controllare l'auto-assemblaggio di questo tipo di peptidi alogenati. I nostri risultati mostrano per la prima volta XB come nuovo strumento per progettare accuratamente nanostrutture peptidiche. In un contesto più biologico, questi risultati possono anche fare luce sull'impatto dell'alogenazione in vivo, come conseguenza dei meccanismi di stress ossidativo. Questi studi sono stati confermati da numerose determinazioni di struttura cristallina, cosa piuttosto insolita per peptidi amiloidogenici. Questo può essere correlato alla presenza di atomi di alogeno nelle sequenze, che promuovono la cristallizzaione dei peptidi e facilitano la determinazione di fase. Queste strutture cristalline confermano le caratteristiche generali delle fibre amiloidi, mostrando in dettaglio le interazioni non covalenti che determinano l'auto-assemblaggio dei peptidi. Le strutture cristalline ottenute possono contribuire a chiarire ulteriormente il processo di auto-assemblaggio del segmento KLVFF e di sequenze simili.
Halogen bonding as a new supramolecular tool to control protein and peptide self-assembly
PIZZI, ANDREA
Abstract
More than 5000 naturally occurring halogenated compounds have been discovered up to date. Halogenation usually occurs at the periphery of molecules and is a minimal structural modification. However, it can induce deep changes in the molecular properties because of the peculiar chemical features of halogen atoms. Among these features, their tendency to function as electrophilic species has recently attracted wide interest. In particular, halogen atoms may behave as donors of halogen bonding (XB), which is a strong, specific, and directional noncovalent interaction. This thesis highlights the potential role of XB in the fine tuning of self-assembly involving biomolecules containing halogenated amino acids. The first part of the thesis describes how halogenation improves the self-assembly of a well-known phenylalanine-based organic gelator: N-Fmoc-Phe. The hydrogel formation ability and properties of monohalogenated derivatives of N-Fmoc-4-X-Phe (X = F, Cl, Br, I) has been related for the first time to halogen atom polarizability, i.e., the propensity to function as XB-donor. In fact, iodinated and brominated derivatives were found to form the strongest gels, and the XB occurrence was confirmed by single crystal structure analysis. The second part of the thesis shows the impact of halogenation on the self-assembly behavior of a pentapeptide. The segment KLVFF, core sequence of the amyloid beta (Aβ) protein, has been modified at the para position of the phenylalanine residues obtaining seven different halogenated derivatives. It has been found that the nature of the halogen atoms, their number and position in the sequence affect the peptide nanostructures obtained in solution. By single point mutation, i.e., halogen for hydrogen replacement, we could control the selective obtainment of four various nanostructures. Single crystal X-ray analysis demonstrated the potential role of XB in controlling the self-assembly of these kind of halogenated peptides. Our findings demonstrate for the first time XB as a new tool to carefully design peptide nanostructures. In a more biological context, these results may also shed new light on the impact of halogenation in vivo and diseases thereof, as a consequence of oxidative stress mechanisms. These studies were corroborated by extensive crystal structure determinations, which is rather unusual for amyloidogenic peptides. This may be related to the presence of halogen atoms in the sequences, which promotes peptide crystallization along with phase determination. These crystal structures confirm the overall features of the amyloid cross-β spine, showing in detail the key noncovalent interactions driving the self-assembly of the peptides. The obtained crystal structures may contribute to further enlighten the amyloidogenic self-assembly of the widely studied KLVFF segment and related sequences.File | Dimensione | Formato | |
---|---|---|---|
PhD thesis_Andrea Pizzi.pdf
Open Access dal 02/03/2020
Descrizione: Tesi di Dottorato
Dimensione
27.41 MB
Formato
Adobe PDF
|
27.41 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/132683