The study of the low temperature chemistry in the combustion is a field about which, in the last years, several efforts were spent. In particular, different works focused on obtaining stable cool flames, which, being a phenomenon caused by the low temperature reactions, allow to deepen the comprehension in this field. These studies can lead to an improvement in the design of burners and gas turbines. A widespread device used, also experimentally, to study the low temperature chemistry consists in the counter-flow flames. This configuration represents a good approximation of the condition along the flame front, where the fuel gets in contact with the oxidizer. From a computational point of view, counter-flow flames can be modelled as a 1-dimensional system, allowing to considerably reduce the computation time. The following step has been the study of co-flow diffusion flames, which is a 2-dimensional system and simulate more accurately a real flame. A drawback of this configuration consists in the huge computational times and in the great numerical difficulties compared to a 1-dimensional case as the counter-flow flame. In this thesis work, the effect of the low temperature chemistry has been studied in these configurations, comparing the results obtained with a reduced kinetic mechanism, comprehensive of the low temperature reactions, and with a reduced kinetic mechanism which considers only the reactions occurring at high temperature. Analysing temperature and species profiles, the effect of the low temperature chemistry on the flame has been observed. Finally, regarding the counter-flow flames, a sensitivity analysis has been performed in order to study the dependence of the low temperature chemistry on key parameters as temperature and pressure.
Lo studio della chimica di bassa temperatura nella combustione è un ambito sul quale, negli ultimi anni, sono stati dedicati numerosi sforzi. In particolare, diversi lavori si sono focalizzati nell’ottenimento di fiamme fredde stabili, le quali, essendo un fenomeno dovuto alle reazioni che avvengono a bassa temperatura, permettono di approfondire la comprensione di questo particolare campo. Questi studi possono portare a un miglioramento nella progettazione di grandi bruciatori o turbine a gas. Uno strumento molto diffuso anche sperimentalmente per lo studio della chimica di bassa temperatura consiste nelle fiamme a contro-diffusione. Questa configurazione rappresenta una buona approssimazione delle condizioni sul fronte di fiamma, dove il combustibile incontra l’ossidante. Dal punto di vista computazionale, le fiamme a contro-diffusione possono essere modellate come un sistema monodimensionale permettendo di ridurre sensibilmente i tempi di calcolo. Il successivo sviluppo è stato lo studio di fiamme a diffusione in una configurazione co-flow, la quale, essendo un sistema bidimensionale, simula più accuratamente una fiamma reale. Lo svantaggio di questa configurazione consiste nei tempi di calcolo enormemente dilatati e nelle grandi difficoltà numeriche, paragonate a un caso monodimensionale qual è la fiamma a contro-diffusione. Nel presente lavoro di tesi, l’effetto della chimica di bassa temperatura è stato studiato in queste configurazioni, paragonando i risultati ottenuti con uno schema cinetico ridotto, ma comprensivo delle reazioni di bassa temperatura, e uno composto solo dalle reazioni che avvengono ad alta temperatura. Analizzando i profili di temperatura e di alcune specie chiave, si è osservato l’effetto della chimica di bassa temperatura sulla fiamma. Per le fiamme a contro-diffusione è stata infine eseguita un’analisi di sensitività per studiare la dipendenza della chimica di bassa temperatura da alcuni parametri chiave quali temperatura e pressione.
The role of low temperature chemistry in laminar diffusion flames
CINQUANTA, MARCO;BRIGNOLI, DAVIDE
2015/2016
Abstract
The study of the low temperature chemistry in the combustion is a field about which, in the last years, several efforts were spent. In particular, different works focused on obtaining stable cool flames, which, being a phenomenon caused by the low temperature reactions, allow to deepen the comprehension in this field. These studies can lead to an improvement in the design of burners and gas turbines. A widespread device used, also experimentally, to study the low temperature chemistry consists in the counter-flow flames. This configuration represents a good approximation of the condition along the flame front, where the fuel gets in contact with the oxidizer. From a computational point of view, counter-flow flames can be modelled as a 1-dimensional system, allowing to considerably reduce the computation time. The following step has been the study of co-flow diffusion flames, which is a 2-dimensional system and simulate more accurately a real flame. A drawback of this configuration consists in the huge computational times and in the great numerical difficulties compared to a 1-dimensional case as the counter-flow flame. In this thesis work, the effect of the low temperature chemistry has been studied in these configurations, comparing the results obtained with a reduced kinetic mechanism, comprehensive of the low temperature reactions, and with a reduced kinetic mechanism which considers only the reactions occurring at high temperature. Analysing temperature and species profiles, the effect of the low temperature chemistry on the flame has been observed. Finally, regarding the counter-flow flames, a sensitivity analysis has been performed in order to study the dependence of the low temperature chemistry on key parameters as temperature and pressure.File | Dimensione | Formato | |
---|---|---|---|
2017_04_Brignoli_Cinquanta.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
4.36 MB
Formato
Adobe PDF
|
4.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/133068