Carbon/carbon composites synthesis involves the deposition of pyrolytic carbon produced by the pyrolysis of a gaseous hydrocarbon in a preform made of carbon fibers. This process is called chemical vapour deposition (CVD) or chemical vapour infiltration (CVI) if occurring in a porous substrate. The aim of the present work is to propose a detailed heterogeneous kinetic mechanism coupling the gas phase pyrolysis of methane and gas-solid surface interactions for chemical vapour infiltration process. In order to model the gas phase pyrolysis of methane, the POLIMI gas phase kinetic mechanism is revised and the prediction of the model is improved by comparison with experimental data obtained for methane pyrolysis in a range of pressures spanning from 0.1 to 1 atm and at relatively high temperature (1000-1300 K). Concerning the gas-solid surface interactions, the detailed heterogeneous models available in the literature are analysed and validated by comparison with experimental results obtained in a perfectly stirred reactor at low pressure (2.6 kPa), with temperature ranging from 1173 to 1323 and residence time ranging from 0.5 to 4 s, using propane diluted in nitrogen as carbon precursor, since experimental data in the case of methane pyrolysis are unavailable. Therefore, the model proposed by Fournet et al. is revised and a good candidate for detailed heterogeneous chemistry is found. Finally, the fully-coupled code developed in order to solve a real chemical vapour infiltration problem in methane pyrolysis conditions is briefly introduced. The simulation accounts for the revised POLIMI kinetic mechanism, the heterogeneous model developed by Fournet et al. assuming the conservation of the moles of active sites between the inlet and the outlet of the reactor, and an evolving pore structure model.
La sintesi di materiali compositi è spesso effettuata mediante il deposito di carbonio derivante dalla pirolisi di idrocarburi leggeri gassosi su fibre di carbonio. Questo processo è chiamato CVD (chemical vapour deposition) o CVI (chemical vapour infiltration) nel caso di substrato poroso. Lo scopo di questo lavoro è quello di proporre un meccanismo cinetico dettagliato che comprenda sia la pirolisi del metano che l’interazione tra fase gas e superficie per il processo CVI. La pirolisi del metano è modellata usando il meccanismo cinetico POLIMI, estendendone la convalida alle condizioni di interesse. Per quanto riguarda le interazioni gas-solido, i meccanismi cinetici disponibili in letteratura sono stati analizzati e validati tramite il confronto con dati sperimentali ottenuti in un reattore perfettamente miscelato a bassa pressione (2.7 kPa), in un range di temperatura tra i 1173 a 1323 K e per tempi di residenza compresi tra 0.5 e 4 secondi, usando propano diluito in azoto come precursore di deposito carbonioso. In questo modo il modello proposto da Fournet è stato rivisitato e ottimizzato per descrivere la cinetica di deposizione. Infine, il codice sviluppato per risolvere problemi relativi al CVI in condizioni di pirolisi di metano è brevemente introdotto. Le simulazioni sono fatte usando un meccanismo cinetico dettagliato che comprende il meccanismo cinetico POLIMI per la pirolisi del metano in fase gas e il meccanismo di Fournet rivisitato per le interazioni gas-solido. Al meccanismo cinetico è accoppiato un modello che descrive l’evoluzione dei pori all’interno della struttura.
Kinetic modelling of chemical vapour infiltration process
RUVITUSO, VERONICA
2016/2017
Abstract
Carbon/carbon composites synthesis involves the deposition of pyrolytic carbon produced by the pyrolysis of a gaseous hydrocarbon in a preform made of carbon fibers. This process is called chemical vapour deposition (CVD) or chemical vapour infiltration (CVI) if occurring in a porous substrate. The aim of the present work is to propose a detailed heterogeneous kinetic mechanism coupling the gas phase pyrolysis of methane and gas-solid surface interactions for chemical vapour infiltration process. In order to model the gas phase pyrolysis of methane, the POLIMI gas phase kinetic mechanism is revised and the prediction of the model is improved by comparison with experimental data obtained for methane pyrolysis in a range of pressures spanning from 0.1 to 1 atm and at relatively high temperature (1000-1300 K). Concerning the gas-solid surface interactions, the detailed heterogeneous models available in the literature are analysed and validated by comparison with experimental results obtained in a perfectly stirred reactor at low pressure (2.6 kPa), with temperature ranging from 1173 to 1323 and residence time ranging from 0.5 to 4 s, using propane diluted in nitrogen as carbon precursor, since experimental data in the case of methane pyrolysis are unavailable. Therefore, the model proposed by Fournet et al. is revised and a good candidate for detailed heterogeneous chemistry is found. Finally, the fully-coupled code developed in order to solve a real chemical vapour infiltration problem in methane pyrolysis conditions is briefly introduced. The simulation accounts for the revised POLIMI kinetic mechanism, the heterogeneous model developed by Fournet et al. assuming the conservation of the moles of active sites between the inlet and the outlet of the reactor, and an evolving pore structure model.File | Dimensione | Formato | |
---|---|---|---|
TESI DEF.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
3.4 MB
Formato
Adobe PDF
|
3.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/133078