The aim of this thesis is to provide a multi-parametric study for the analysis of the heart rate (HR) and the respiration signal in babies. In this work it was evaluated how different physiological conditions could affect cardiorespiratory control mechanisms, to early diagnose signs of diseases, particularly the Sudden Infant Death Syndrome (SIDS). For this reason, the comparisons between Active and Quiet sleep states (AS and QS) and ages of the babies (Newborns and One Month old babies) were analyzed. The signals considered were the RR-interval and the Respiration signal, from which the Inter-Breathing Interval signal (IBI) has been obtained. Time domain and frequency domain parameters were computed, then a bivariate analysis was conducted through the study of coherence via surrogate data analysis. In particular, four ranges of frequencies were considered, specifically defined to asses respiratory contributions. The quantification of the variability of HR and Respiration revealed to be useful in distinguishing between sleep states. Parameters resulted higher during AS. Significant results were obtained for One Month population, presenting several time domain indices with p-values below 0.01. The comparison between ages evidenced that indices confirm the higher variability of the HR in the Newborn population and a higher variability of the Respiration signal in the One Month population. Increased values for the Low Frequencies components of RR-intervals, indicating relevant sympathetic contribution, were detected for Newborns in AS. An increase in high frequency components of Respiration signal characterized One Month babies, particularly in AS, indicating an improved parasympathetic control (p-values below 0.01). Finally, as proven using surrogate data, QS revealed to be the state with the higher cardiorespiratory coupling, confirming previous literature results. Since significance was found in several cases, these results confirm the robustness of the parameters to discriminate populations in different physiological states, making them useful to assess the cardiorespiratory coupling.
Lo scopo di questa tesi è fornire uno studio multi-parametrico per l’analisi della frequenza cardiaca (HR) e del segnale respiratorio negli infanti. In questo lavoro è stato valutato come differenti condizioni fisiologiche influiscano sui meccanismi di controllo cardiorespiratorio, per diagnosticare segni di disturbi, principalmente la Sudden Infant Death Syndrome (SIDS). Per questo scopo sono stati analizzati i confronti fra stati del sonno Active e Quiet (AS e QS) e fra età dei soggetti (popolazioni Newborns e One Month). I segnali considerati sono RR-interval e segnale respiratorio, da cui si ottiene l’Inter-Breathing Interval signal (IBI). Sono stati calcolati parametri nel dominio del tempo e delle frequenze ed è stata condotta un’analisi bivariata tramite lo studio della coerenza (surrogate data analysis). In particolare sono stati considerati quattro range di frequenze, specificamente definiti per valutare i contributi respiratori. La quantificazione della variabilità dell’HR e del segnale respiratorio si è rivelata utile nella distinzione fra stati del sonno. I parametri sono risultati di valore maggiori durante l’AS. Risultati significativi sono stati ottenuti per la popolazione One Month nel dominio del tempo con p-values inferiori a 0.01. Il confronto fra età ha evidenziato che gli indici confermano una maggiore variabilità dell’HR nella popolazione Newborns e del segnale respiratorio nella popolazione One Month. Per i Newborns in AS si nota un aumento delle componenti degli RR-intervals alle basse frequenze, rivelando un rilevante contributo del sistema simpatico. La popolazione One Month è caratterizzata da un aumento delle componenti alle alte frequenze del segnale respiratorio nell’AS, indicando un miglioramento del controllo del sistema parasimpatico (p-values inferiori a 0.01). L’uso dei surrogate data ha dimostrato che il QS ha il più elevato accoppiamento cardiorespiratorio, confermando i risultati della letteratura. Data la loro significatività, questi risultati confermano la robustezza dei parametri nel discriminare le popolazioni in differenti stati fisiologici, rendendoli utili per valutare l’accoppiamento cardiorespiratorio.
Sudden infant death syndrome : multi-parametric analysis and study via surrogate data of heart rate and respiration variability in term newborns and one month old babies
RAFFIN, FABRIZIO
2016/2017
Abstract
The aim of this thesis is to provide a multi-parametric study for the analysis of the heart rate (HR) and the respiration signal in babies. In this work it was evaluated how different physiological conditions could affect cardiorespiratory control mechanisms, to early diagnose signs of diseases, particularly the Sudden Infant Death Syndrome (SIDS). For this reason, the comparisons between Active and Quiet sleep states (AS and QS) and ages of the babies (Newborns and One Month old babies) were analyzed. The signals considered were the RR-interval and the Respiration signal, from which the Inter-Breathing Interval signal (IBI) has been obtained. Time domain and frequency domain parameters were computed, then a bivariate analysis was conducted through the study of coherence via surrogate data analysis. In particular, four ranges of frequencies were considered, specifically defined to asses respiratory contributions. The quantification of the variability of HR and Respiration revealed to be useful in distinguishing between sleep states. Parameters resulted higher during AS. Significant results were obtained for One Month population, presenting several time domain indices with p-values below 0.01. The comparison between ages evidenced that indices confirm the higher variability of the HR in the Newborn population and a higher variability of the Respiration signal in the One Month population. Increased values for the Low Frequencies components of RR-intervals, indicating relevant sympathetic contribution, were detected for Newborns in AS. An increase in high frequency components of Respiration signal characterized One Month babies, particularly in AS, indicating an improved parasympathetic control (p-values below 0.01). Finally, as proven using surrogate data, QS revealed to be the state with the higher cardiorespiratory coupling, confirming previous literature results. Since significance was found in several cases, these results confirm the robustness of the parameters to discriminate populations in different physiological states, making them useful to assess the cardiorespiratory coupling.File | Dimensione | Formato | |
---|---|---|---|
2017_04_Raffin.pdf
accessibile in internet per tutti
Descrizione: Thesis text
Dimensione
2.13 MB
Formato
Adobe PDF
|
2.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/133351