In the present work, two acrylate-based photocurable resin formulations were explored for use in three-dimensional (3D) printing of micro-scale objects by both laser-based (SLA) and digital light projection-based (DLP) technologies. The first resin consisted of a diacrylate prepolymer, ethoxylated bisphenol A diacrylate (SR-349), paired with an appropriate photoinitiator (TPO-L). The curing characteristics of this resin were evaluated by constructing working curves for different concentrations of photoinitiator (using DLP) and diluent (using SLA). The optimum concentration of photoinitiator (in mass percent with respect to the resin) was found to be 3%, while the optimum diluent concentration was found to be 10% of isopropanol. Ultraviolet (UV) light irradiated into the second resin, the commercial acrylate resin 'Snow White', was found to have a lower penetration depth than light irradiated into the SR-349+3% TPO-L resin both with 10% isopropanol diluent and without diluent, suggesting that Snow White resin can produce objects with a higher vertical resolution than the tested formulations of SR-349-based resins. Ultraviolet photocalorimetry was used to determine the presence of residual heat of polymerization of all the samples after exposure in SLA or DLP, and after post-treatment in a UV oven. It was found that the post-treatment exposure was required for all resins to achieve complete polymerization. Lastly, DLP process parameters were optimized for the printing of a representative structure similar to a tissue engineering scaffold with Snow White resin at the highest possible accuracy. The exposure time that minimized the effects of overcuring in the xy-plane and undulations in the z plane was found to be 0.7 seconds.
In questo lavoro sono state prese in considerazione due resine fotopolimerizzabili acrilate per applicazioni in stampa 3D di oggetti micrometrici sia in sistemi a sorgente laser (SLA) sia con proiettore (DLP). La prima resina era composta di un prepolimero diacrilato, un derivato etossilato del bisfenolo A (SR-349), abbinato con un opportuno fotoiniziatore (TPO-L). Le caratteristiche di polimerizzazione di questa resina sono state valutate elaborando curve di lavoro per diverse concentrazioni di fotoiniziatore (in DLP) e diluente (in SLA). La concentrazione ottimale del fotoiniziatore (in percentuale in massa rispetto alla resina) è risultata essere del 3%, mentre la concentrazione ottimale del diluente del 10% di isopropanolo. La luce ultravioletta irraggiata nella seconda resina, la resina commerciale di acrilato 'Snow White', risulta avere una minore profondità di penetrazione rispetto alla resina SR-349+3% TPO-L sia in presenza del 10% del diluente isopropanolo che senza diluente, suggerendo che la Snow White è in grado di produrre oggetti con una maggiore risoluzione verticale rispetto alla formulazione testata della resina su base SR-349. La DSC-UV è stata usata per determinare l’eventuale calore residuo di polimerizzazione sia post stampa sia post curing aggiuntivo in forno UV. È stato verificato che l’esposizione in forno UV post stampa è richiesta per tutti i campioni per il raggiungimento di una completa polimerizzazione. Infine, i parametri di processo in DLP sono stati ottimizzati per stampare con il massimo grado di accuratezza una struttura rappresentativa come uno scaffold usando la resina Snow White. Il tempo di esposizione che minimizza gli effetti di overcuring nel piano xy e l’ondulazione nel piano z è stato rilevato essere di 0,7 secondi.
Optimization of resin and process parameters for microfabrication by laser and projection-based stereolithography
BELLON, RAYMOND BRADFORD
2016/2017
Abstract
In the present work, two acrylate-based photocurable resin formulations were explored for use in three-dimensional (3D) printing of micro-scale objects by both laser-based (SLA) and digital light projection-based (DLP) technologies. The first resin consisted of a diacrylate prepolymer, ethoxylated bisphenol A diacrylate (SR-349), paired with an appropriate photoinitiator (TPO-L). The curing characteristics of this resin were evaluated by constructing working curves for different concentrations of photoinitiator (using DLP) and diluent (using SLA). The optimum concentration of photoinitiator (in mass percent with respect to the resin) was found to be 3%, while the optimum diluent concentration was found to be 10% of isopropanol. Ultraviolet (UV) light irradiated into the second resin, the commercial acrylate resin 'Snow White', was found to have a lower penetration depth than light irradiated into the SR-349+3% TPO-L resin both with 10% isopropanol diluent and without diluent, suggesting that Snow White resin can produce objects with a higher vertical resolution than the tested formulations of SR-349-based resins. Ultraviolet photocalorimetry was used to determine the presence of residual heat of polymerization of all the samples after exposure in SLA or DLP, and after post-treatment in a UV oven. It was found that the post-treatment exposure was required for all resins to achieve complete polymerization. Lastly, DLP process parameters were optimized for the printing of a representative structure similar to a tissue engineering scaffold with Snow White resin at the highest possible accuracy. The exposure time that minimized the effects of overcuring in the xy-plane and undulations in the z plane was found to be 0.7 seconds.File | Dimensione | Formato | |
---|---|---|---|
2017_04_Bellon.pdf
non accessibile
Descrizione: Thesis text
Dimensione
4.19 MB
Formato
Adobe PDF
|
4.19 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/133417