The increase of generation efficiency together with Carbon Capture and Storage (CCS) have been recognized as key players in mitigating CO2 emissions in the power generation sector, and for this reason this base line has been followed as guideline principle of the present work of Master Thesis. In particular, starting from the plant layouts proposed by Campanari [6] [7], many synergies deriving from coupling an atmospheric-pressure intermediate-temperature SOFC with a bottoming steam Rankine-cycle, and a pressurised SOFC within a hybrid Gas-Turbine cycle, have been exploited to reach +70% LHV efficiency. These figures were obtained also in the CCS configuration, providing very low specific primary energy consumption for the CO2 avoided (even 0.56 MJ kg−1). In particular, the thesis is aimed at investigating and comparing different strategies of CCS which could enhance the Carbon-Capture-Rate of the reference plants, maintaining and even improving their efficiency, based on the same set of realistic assumptions and scale (100 MW). Among the possible alternatives, three new solutions are proposed in this work: (i) post-anode oxy-fuel configuration, ii) integration of polymeric membranes for CO2 and H2 separation respectively inside a cryogenic internally refrigerated flashsystem for CO2 capture, and iii) implementation of an advanced oxy-fuel plant with an Oxygen-Transport-Membrane reactor substituting the conventional ASU and the post-combustor. For all those alternative options detailed energy and material balances are proposed together with sensitivity analyses on the most important cycle parameters. Besides the classical thermodynamic approach, plants performances have been analysed also from a II-law point of view as well as from an economic perspective, for the membrane-based cycles.
L’aumento dell’efficienza di conversione dell’energia a partire da combustibili fossili insieme all’implementazione di tecniche di cattura e stoccaggio della CO2 (CCS) rappresentano strategie chiave nell’ottica di una riduzione delle emissioni nel settore della produzione energetica. E’ dunque per questo motivo che sono stati scelti come filo conduttore della tesi. Infatti, sulla base dei precedenti lavori di Campanari [6] [7], sono state sfruttate diverse possibli sinergie derivanti dall’accoppiamento di SOFC operanti a temperature intermedie (IT-SOFC) e a pressione atmosferica con cicli bottoming di tipo Rankine, e dall’inserimento di IT-SOFC pressurizzate in cicli ibridi a Turbina a Gas, per ottentere rendimenti sempre superiori al 70%. Tali livelli di efficienza sono stati ottenuti anche in configurazione CCS, con indici di consumo energetico legati alla CO2 evitata molto bassi, sino a 0.56 MJ kg−1. In particolare questa tesi è incentrata sull’analisi, l’implementazione e il confronto di diverse tecniche di CCS, volte ad incrementare il tasso di cattura degli impianti di riferimento, senza penalizzarne il rendimento. Alla base dei confronti sta l’adozione delle medesime ipotesi di simulazione e della medesima taglia di riferimento (100 MW). Tra le possibili alternative, tre nuove soluzioni sono state proposte in questo lavoro : i) l’adozione di configurazioni ossi-combustione post-anodo, ii) l’integrazione di membrane polimeriche per la separazione di H2 e CO2 all’interno di un sistema per la purificazione della CO2 criogenico basato su doppio flash, iii) l’implementazione dell’ossi-combustione per mezzo di un reattore OTM (Oxygen-Transport-Membrane). Per ogni configurazione proposta sono stati riportati dettagliati bilanci di massa e di energia, così come analisi di sensitività sui principali parametri caratterizzanti ogni soluzione. Inoltre le prestazioni di impianto sono state analizzate anche dal punto di vista exergetico e, nei casi con membrane, economico.
System modelling and comparison of diverse advanced carbon capture techniques applied to ultra-high efficiency SOFC power cycles
SCOTTI, BEATRICE
2015/2016
Abstract
The increase of generation efficiency together with Carbon Capture and Storage (CCS) have been recognized as key players in mitigating CO2 emissions in the power generation sector, and for this reason this base line has been followed as guideline principle of the present work of Master Thesis. In particular, starting from the plant layouts proposed by Campanari [6] [7], many synergies deriving from coupling an atmospheric-pressure intermediate-temperature SOFC with a bottoming steam Rankine-cycle, and a pressurised SOFC within a hybrid Gas-Turbine cycle, have been exploited to reach +70% LHV efficiency. These figures were obtained also in the CCS configuration, providing very low specific primary energy consumption for the CO2 avoided (even 0.56 MJ kg−1). In particular, the thesis is aimed at investigating and comparing different strategies of CCS which could enhance the Carbon-Capture-Rate of the reference plants, maintaining and even improving their efficiency, based on the same set of realistic assumptions and scale (100 MW). Among the possible alternatives, three new solutions are proposed in this work: (i) post-anode oxy-fuel configuration, ii) integration of polymeric membranes for CO2 and H2 separation respectively inside a cryogenic internally refrigerated flashsystem for CO2 capture, and iii) implementation of an advanced oxy-fuel plant with an Oxygen-Transport-Membrane reactor substituting the conventional ASU and the post-combustor. For all those alternative options detailed energy and material balances are proposed together with sensitivity analyses on the most important cycle parameters. Besides the classical thermodynamic approach, plants performances have been analysed also from a II-law point of view as well as from an economic perspective, for the membrane-based cycles.File | Dimensione | Formato | |
---|---|---|---|
2017_04_Scotti_01.pdf
solo utenti autorizzati dal 07/04/2018
Descrizione: Testo della tesi
Dimensione
17.67 MB
Formato
Adobe PDF
|
17.67 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/133940