Natural gas engines own an ever-growing market share of the European market. The delivery vans (category N1, according to European legislation) on the other hand, are almost exclusively powered by diesel engines. The few manufacturers offering compressed natural gas (CNG) powered engines develop them with minimal effort starting from diesel engines. This non-optimal setup of CNG engines for delivery vans results into a comparably low efficiency and higher CO2 emissions. For this project, the focus was on the Fiat Powertrain F1C engine. The main goal of this thesis was to develop an intake manifold for this engine taking into account the implementation of high pressure exhaust gas recirculation (EGR). EGR is usually implemented in compression ignition engines in order to limit the NOx emissions by limiting the combustion temperature. In the case of the F1C CNG engine, the emissions of such pollutants are not a concern, since the catalytic converter allows the engine to respect the Euro 6 emission limits. The main goal was to exploit EGR to reduce throttling during partial load operation of the engine, which has been proven to be where its efficiency is at its lowest. To assure perfect drivability of the engine under any circumstance, perfect mixing between fresh charge and exhaust gases must be ensured. In order to achieve this goal, the process has been simulated through computational fluid dynamics. This thesis uses a coupling between OpenFOAM and GasDyn to create a detailed, three-dimensional simulation of the intake manifold, where the mixing of fresh air and exhaust gases takes place, coupled with a one-dimensional model of the rest of the engine. This has allowed to have an accurate description of the mixing process at different loads and engine speeds. Different geometries have been implemented and their results have been compared.
I motori a gas naturale costituiscono una fetta di mercato sempre più importante all’interno del mercato europeo. Una eccezione è costituita dai veicoli commerciali leggeri (categoria N1, secondo la normativa europea), che sono in gran maggioranza mossi da motori Diesel. I pochi produttori che offrono una motorizzazione a gas naturale compresso (CNG), sviluppano tali motori con pochi investimenti e a partire dalle esistenti motorizzazioni Diesel. Tale setup non ottimale porta a basse efficienze ed emissioni di CO2 più elevate. Questo progetto ha utilizzato come riferimento il motore F1C di Fiat Powertrain. Il principale obbiettivo di questa tesi era lo sviluppo di un collettore di aspirazione per tale motore che implementasse il ricircolo di gas di scarico (EGR). L’EGR è solitamente utilizzato su motori ad accensione spontanea per limitare le emissioni di NOx attraverso l’abbassamento delle temperature di combustione. Nel caso dell’F1C, tali inquinanti non sono una preoccupazione, dal momento che le sue emissioni rientrano nei limiti imposti dalla normativa Euro 6. In questo caso l’interesse era di sfruttare l’EGR per limitare l’uso della valvola a farfalla per la parzializzazione del motore a basso-medio carico, che è stato verificato essere la condizione d’uso in cui il motore ha efficienze più basse. Per assicurare una perfetta guidabilità in qualsiasi frangente, è necessario assicurare un perfetto miscelamento dei gas combusti con la carica fresca e, per giungere a tale obbiettivo, il processo è stato simulato col ricorso alla fluidodinamica computazionale. Durante lo svolgimento di questa tesi è stato usato un accoppiamento di OpenFOAM e GasDyn per creare un dettagliato modello tridimensionale del collettore di aspirazione, laddove il processo di miscelamento ha luogo, accoppiato con un modello monodimensionale del resto del motore. Ciò ha permesso di prevedere il processo di miscelamento a diverse velocità di rotazione e diversi carichi. Differenti geometrie sono state implementate ed i risultati sono stati comparati.
Coupled 1D-3D simulation of a modern natural gas IC engine with EGR
MANCA DI VILLAHERMOSA, GIACOMO
2015/2016
Abstract
Natural gas engines own an ever-growing market share of the European market. The delivery vans (category N1, according to European legislation) on the other hand, are almost exclusively powered by diesel engines. The few manufacturers offering compressed natural gas (CNG) powered engines develop them with minimal effort starting from diesel engines. This non-optimal setup of CNG engines for delivery vans results into a comparably low efficiency and higher CO2 emissions. For this project, the focus was on the Fiat Powertrain F1C engine. The main goal of this thesis was to develop an intake manifold for this engine taking into account the implementation of high pressure exhaust gas recirculation (EGR). EGR is usually implemented in compression ignition engines in order to limit the NOx emissions by limiting the combustion temperature. In the case of the F1C CNG engine, the emissions of such pollutants are not a concern, since the catalytic converter allows the engine to respect the Euro 6 emission limits. The main goal was to exploit EGR to reduce throttling during partial load operation of the engine, which has been proven to be where its efficiency is at its lowest. To assure perfect drivability of the engine under any circumstance, perfect mixing between fresh charge and exhaust gases must be ensured. In order to achieve this goal, the process has been simulated through computational fluid dynamics. This thesis uses a coupling between OpenFOAM and GasDyn to create a detailed, three-dimensional simulation of the intake manifold, where the mixing of fresh air and exhaust gases takes place, coupled with a one-dimensional model of the rest of the engine. This has allowed to have an accurate description of the mixing process at different loads and engine speeds. Different geometries have been implemented and their results have been compared.File | Dimensione | Formato | |
---|---|---|---|
2017_04_MancadiVillahermosa.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
3.46 MB
Formato
Adobe PDF
|
3.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/133949