The gas turbine engine efficiency deteriorates dramatically when its size is reduced. This fact limits its use for low-power and long duration applications, due to fuel weight. It is conceivable to replace a small scale gas turbine engine with a different power generating technology such as a Diesel engine providing higher efficiency. In this work, comparisons are made for propulsion systems for unmanned flights with several hundred kilowatts of propulsive power at moderate subsonic speeds up to fifty hours in duration. The weights of the propulsion system, required fuel, and total aircraft are considered. Gas-turbine engines, two- and four-stroke reciprocating (diesel and spark-ignition) engines, and electric motors (with battery storage and/or electric generation) are analyzed. Detailed Matlab codes are developed to assess thermodynamic properties of the engines in the range of interest. Consideration is given to two types of missions: (i) a mission dominated by a constant-power requirement and (ii) a mission with intermittent demand for high thrust and/or substantial auxiliary power. The two surviving competitors are gas-turbine engines and turbo-charged four-stroke Diesel engines, each type driving propellers. It is shown that hybrid-electric schemes and one engine mechanically driving several propellers are less efficient. At the 500 kW level, one gas-turbine engine driving a larger propeller is more efficient for durations up to twenty-five hours, while several Diesel engines driving several propellers become more efficient at longer durations. The decreasing efficiency of the gas-turbine engine with decreasing size and increasing compression ratio is a key factor. The increasing efficiency of propellers with decreasing size is another key factor.
L'efficienza di un motore a turbina a gas diminuisce sensibilmente quando si riducono le sue dimensioni. Questo fatto limita il suo utilizzo in applicazioni dove basse potenze e lunghe durate sono necessarie, a causa dell'elevato peso del combustibile. \`E quindi lecito pensare di sostituire un piccolo motore a turbina a gas con una diversa tecnologia, come per esempio un più efficiente motore Diesel. In questo lavoro sono stati effettuati confronti tra sistemi propulsivi adatti a voli a pilotaggio remoto dove sono richieste alcune centinaia di kilowatt di potenza propulsiva a velocità subsoniche fino a cinquanta ore di volo. Si è tenuto conto del peso del sistema propulsivo, del combustibile necessario e del velivolo completo. Sono stati analizzati motori a turbina a gas, motori a combustione interna due e quattro tempi (Diesel e ad accensione comandata), e motori elettrici (con batterie e/o generatori elettrici). Sono stati sviluppati dettagliati codici Matlab per il calcolo delle proprietà termodinamiche dei motori nei range di interesse. Si è data enfasi a due tipi di missioni: (i) una in cui è richiesta potenza costante e (ii) una con necessità intermittente di elevata spinta e/o potenza ausiliaria a bordo. I due candidati finali sono i motori a turbina a gas e i motori Diesel quattro tempi turbo-aspirati, ciascuno azionante una o più eliche. Si dimostra che configurazioni ibride e disposizioni in cui un motore è collegato meccanicamente a più eliche sono scelte poco efficienti. Per potenze intorno ai 500 kW, un motore a turbina a gas che azioni un'elica di grandi dimensioni è la scelta più efficiente per durate fino a venticinque ore, mentre un sistema comprendente più motori Diesel azionanti un'elica ciascuno diventa più conveniente per durate maggiori. Uno dei fattori chiave è il progressivo calo di efficienza dei motori a turbina a gas al diminuire delle dimensioni e all'aumentare del rapporto di compressione. Un altro elemento fondamentale è l'aumento dell'efficienza propulsiva delle eliche al diminuire del diametro.
Engine-type and propulsion-configuration selections for long-duration UAV flights
CIRIGLIANO, DANIELE
2016/2017
Abstract
The gas turbine engine efficiency deteriorates dramatically when its size is reduced. This fact limits its use for low-power and long duration applications, due to fuel weight. It is conceivable to replace a small scale gas turbine engine with a different power generating technology such as a Diesel engine providing higher efficiency. In this work, comparisons are made for propulsion systems for unmanned flights with several hundred kilowatts of propulsive power at moderate subsonic speeds up to fifty hours in duration. The weights of the propulsion system, required fuel, and total aircraft are considered. Gas-turbine engines, two- and four-stroke reciprocating (diesel and spark-ignition) engines, and electric motors (with battery storage and/or electric generation) are analyzed. Detailed Matlab codes are developed to assess thermodynamic properties of the engines in the range of interest. Consideration is given to two types of missions: (i) a mission dominated by a constant-power requirement and (ii) a mission with intermittent demand for high thrust and/or substantial auxiliary power. The two surviving competitors are gas-turbine engines and turbo-charged four-stroke Diesel engines, each type driving propellers. It is shown that hybrid-electric schemes and one engine mechanically driving several propellers are less efficient. At the 500 kW level, one gas-turbine engine driving a larger propeller is more efficient for durations up to twenty-five hours, while several Diesel engines driving several propellers become more efficient at longer durations. The decreasing efficiency of the gas-turbine engine with decreasing size and increasing compression ratio is a key factor. The increasing efficiency of propellers with decreasing size is another key factor.File | Dimensione | Formato | |
---|---|---|---|
UAV Propulsion - Cirigliano.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
2.06 MB
Formato
Adobe PDF
|
2.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/134017