Self-healing materials represent one of the most attractive and innovative topic in material science. Thanks to the numerous possible applications of those materials (such as orbital debris impact protection) in aerospace field, the Aerospace Science and Technology Department has been active in this field during the last decade. The present thesis is the result of an experimental campaign during which Surlyn® 8940 square panels have been tested in water environment with different configurations. Ballistic tests were carried out during which the ionomer panel was mounted on a cylindrical small tank (about 2.4l volume) and a spherical bullet was accelerated and directed over the panel. Inside the tank two transducers recorded pressure variations. The velocity of the bullet was fixed at 180 m/s, thickness of the panel ranged from 1.5 to 3mm and diameter of the projectile ranged from 5.5 to 14mm. Three configurations were exploited: in the first one there was only water in the tank, while the other two presented an internal aluminium filler (Explosafe®) in form of a single cylinder matching the tank dimension or in form of small cylindrical pellets. During the previous campaigns it was noticed how Explosafe® drastically worsened the self-healing process, probably due to the physical contact between the panel and the filler. The filler shape was then modified to leave some room behind the panel, so to avoid any possible contact. Results show that the filler does obstacle the self-healing process indeed, but in milder measure. Moreover the presence of Explosafe® reduced the pressure peaks, in particular for small cylindrical pellets configuration and the slosh. The last experiments were done with pressurized tank (internal pressure ranging from 1.2 to 1.4 bar). The collected data suggest a negative effect of the overpressure on the self-healing process.
I materiali autoriparanti rappresentano uno degli argomenti più affascinanti e innovativi della scienza dei materiali. Grazie alle loro numerose possibili applicazioni (come la protezione da impatti con detriti orbitanti) nel campo aerospaziale, il Dipartimento di Scienze e Tecnologie Aerospaziali è attivo nella ricerca in questo campo da 10 anni circa. Questa tesi è il risultato di una campagna di test avente oggetto il comportamento di pannelli costituiti dallo ionomero Surlyn® 8940. Il test balistico in oggetto consisteva nell’ impatto di sfere di acciaio, di diametro variabile tra i 5.5 e i 14mm, sulla superficie di pannelli, aventi spessore compreso tra 1.5 e 3mm, posti sulla base di un serbatoio cilindrico avente capacità di circa 2.4 litri. La velocità per tutti i test è stata fissata a 180 m/s. Lungo il serbatoio sono stati inseriti due sensori di pressione per ricavare informazioni sull’ onda di pressione formatasi in seguito all’ impatto. Sono state messe a confronto tre diverse configurazioni: una che prevedeva la sola presenza di acqua all’ interno del serbatoio, le altre due in presenza di un riempitivo metallico (Explosafe®) sotto forma di un unico cilindro di dimensioni pari a quelle del serbatoio o sotto forma di piccoli pellets a forma cilindrica. Rispetto ai precedenti lavori in cui la presenza di Explosafe® riduceva drasticamente la qualità del processo di autoriparazione, probabilmente a causa del contatto fisico tra il riempitivo e il pannello, si è cercato di evitare ogni possibile contatto modificando la forma del riempitivo lasciando dello spazio dietro al pannello. I risultati hanno mostrato che la presenza del riempitivo ostacola il processo di autoriparazione ma in maniera più lieve. Inoltre vi è stata la conferma in tutti gli esperimenti svolti che la presenza di Explosafe® riduce i picchi di pressione, più sensibilmente nel caso dei piccoli pellets, e lo sloshing. Gli ultimi esperimenti sono stati effettuati con il serbatoio in sovrappressione (pressione interna tra 1.2 e 1.4 bar). I dati raccolti suggeriscono un effetto penalizzante sul processo di autoriparazione.
Self-healing ionomer in a tank with internal aluminium filler : experimental analysis and pressure characterization
SCAGLIONE, FABIO
2015/2016
Abstract
Self-healing materials represent one of the most attractive and innovative topic in material science. Thanks to the numerous possible applications of those materials (such as orbital debris impact protection) in aerospace field, the Aerospace Science and Technology Department has been active in this field during the last decade. The present thesis is the result of an experimental campaign during which Surlyn® 8940 square panels have been tested in water environment with different configurations. Ballistic tests were carried out during which the ionomer panel was mounted on a cylindrical small tank (about 2.4l volume) and a spherical bullet was accelerated and directed over the panel. Inside the tank two transducers recorded pressure variations. The velocity of the bullet was fixed at 180 m/s, thickness of the panel ranged from 1.5 to 3mm and diameter of the projectile ranged from 5.5 to 14mm. Three configurations were exploited: in the first one there was only water in the tank, while the other two presented an internal aluminium filler (Explosafe®) in form of a single cylinder matching the tank dimension or in form of small cylindrical pellets. During the previous campaigns it was noticed how Explosafe® drastically worsened the self-healing process, probably due to the physical contact between the panel and the filler. The filler shape was then modified to leave some room behind the panel, so to avoid any possible contact. Results show that the filler does obstacle the self-healing process indeed, but in milder measure. Moreover the presence of Explosafe® reduced the pressure peaks, in particular for small cylindrical pellets configuration and the slosh. The last experiments were done with pressurized tank (internal pressure ranging from 1.2 to 1.4 bar). The collected data suggest a negative effect of the overpressure on the self-healing process.File | Dimensione | Formato | |
---|---|---|---|
TESI_Finale.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
1.92 MB
Formato
Adobe PDF
|
1.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/134041