This work focuses on the manufacturing and the characterization of coated aluminum powders, and on their use as an energetic additive in hydroxyl-terminated polybutadiene (HTPB)-based hybrid fuels. The starting Al powders sizes range from the micrometric (Al1, nominal diameter of 7.5 µm) to the nanometric range (Al01j and Al18a, 100 nm nominal size). After the coating application, the powders were characterized in the pre-burning phase, evaluating the active Al content, the particle size distribution, and the reactivity under low heating rates (thermogravimetric analysis, TGA). The application of the coating increases the particle size, with a more marked effect for the nano-sized particles, due to their high clustering tendency during the coating procedure and the consequent application of the coating on the surface of clusters. The TGA performed in air with heating rate of 10=circC/min showed a low impact of the coating on the powder reactivity under the tested conditions. The produced powders was then used as additive in HTPB-based hybrid fuels, according to different production protocols, in order to evaluate the effects of the additive and of the solid formulation manufacturing procedure on the ballistic response of the fuel. Ballistic tests were performed in a 2D radial burner, that enables the non intrusive measurement of the fuel sample central port diameter during the combustion run. The burning tests were performed in gaseous oxygen, with initial mass flux (Gox) of 450 kg=(m2s) and chamber pressure pc of 1.0 MPa. The regression rate (rf) of the fuel formulation loaded with coated Al01j (with a coating mass fraction of 15 wt.%) showed a interesting performance increase over the HTPB baseline. In particular, a 27% rf enhancement was achieved for an oxidizer mass flux of 100 kg=(m2s).
Il presente lavoro é focalizzato sulla produzione e caratterizzazione di polveri di alluminio ricoperte, ad uso di additivo energetico per combustibili solidi, a base di polibutadiene a terminazione idrossilica HTPB. Le polveri di alluminio di partenza hanno dimensioni nominali delle particelle che spaziano dai 7.5 µm (Al1) ai 100 nm (Al01j e Al18a). Dopo l’applicazione del coating, le polveri sono caratterizzate attraverso la misura del contenuto di alluminio metallico, la distribuzione della dimensione delle particelle, e l’analisi termogravimetrica a basso rateo di riscaldamento (TGA). L’applicazione del coating aumenta la dimensione delle particelle, con un effetto piú marcato sulle polveri nanometriche. Questo é dovuto alla forte interazione tra le particelle delle polveri nanometriche durante la procedura di manifattura, e alla conseguente deposizione del coating sulla superfice di un coacervo invece che sulle singole particelle. L’analisi termogravimetrica, eseguita in presenza di aria con un rateo di riscaldamento di 10◦C/min, ha mostrato che la presenza del coating ha una bassa incidenza sulla reattivitá delle polveri, nelle condizioni di basso rateo di riscaldamento dei test eseguiti. Le polveri prodotte sono state successivemente usate usate come additivo energetico in combustibili solidi per endoreattori ibridi. I combustibili sono stati prodotti con metodi diversi, per valutare l’infulenza della procedura di manifattura sulla balistica dei combustibili testati. I test di combustione sono stati eseguiti tramite un bruciatore radiale 2D, che consente di misurare il diametro della perforazione centrale del campione di combustibile durante combustione, tramite una tecnica ottica non intrusiva. I test sono stati eseguiti con un flusso massico di ossigeno (Gox) di 450 kg=(m2s), ad una pressione di pc=1.0 MPa. La velocitá di regressione (rf) della formulazione contenente Al01j ricoperto (con una frazione massica di coating pari al 15%) si é rivelata sensibilmente superiore al riferimento (HTPB puro). In particolare, l’aumento della velocitá di regressione é stato del 27% ad un flusso massico d’ossidante di 100 kg=(m2s).
Coated aluminum powders for innovative hybrid rocket fuel formulations
PIANELLI, MICHELE
2015/2016
Abstract
This work focuses on the manufacturing and the characterization of coated aluminum powders, and on their use as an energetic additive in hydroxyl-terminated polybutadiene (HTPB)-based hybrid fuels. The starting Al powders sizes range from the micrometric (Al1, nominal diameter of 7.5 µm) to the nanometric range (Al01j and Al18a, 100 nm nominal size). After the coating application, the powders were characterized in the pre-burning phase, evaluating the active Al content, the particle size distribution, and the reactivity under low heating rates (thermogravimetric analysis, TGA). The application of the coating increases the particle size, with a more marked effect for the nano-sized particles, due to their high clustering tendency during the coating procedure and the consequent application of the coating on the surface of clusters. The TGA performed in air with heating rate of 10=circC/min showed a low impact of the coating on the powder reactivity under the tested conditions. The produced powders was then used as additive in HTPB-based hybrid fuels, according to different production protocols, in order to evaluate the effects of the additive and of the solid formulation manufacturing procedure on the ballistic response of the fuel. Ballistic tests were performed in a 2D radial burner, that enables the non intrusive measurement of the fuel sample central port diameter during the combustion run. The burning tests were performed in gaseous oxygen, with initial mass flux (Gox) of 450 kg=(m2s) and chamber pressure pc of 1.0 MPa. The regression rate (rf) of the fuel formulation loaded with coated Al01j (with a coating mass fraction of 15 wt.%) showed a interesting performance increase over the HTPB baseline. In particular, a 27% rf enhancement was achieved for an oxidizer mass flux of 100 kg=(m2s).File | Dimensione | Formato | |
---|---|---|---|
2017_04_Pianelli.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
6.99 MB
Formato
Adobe PDF
|
6.99 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/134049