In this study, HTPB-paraffin blended fuel formulations have been investigated. Paraffin loading was chosen in order to grant reduced melted layer viscosity during combustion. The low viscosity and the melted layer surface tension of burning paraffins yields to the entrainment of fuel droplets in the core flow, thus enhancing the regression rate (rf) with respect to conventional fuel formulations. In this work, a disperse phase paraffin, was used. The maximum paraffin-loading mass fraction (60 wt.%) was defined after proper manufacturing tests. Combustion runs were performed both in N2O and O2 at a pc of 1.0 MPa with a mOX of 6 g/s. Focusing on tests performed in N2O, the first tested configuration, H10W (10 wt.% paraffin-load), presented a positive regression rate percent variation with respect to the baseline only at high oxidizer mass flux GOX. Then r_f starts decreasing ending up with a percent rf difference over the baseline (Delta rf,%) of -25.8% at GOX = 150 kg/ m^2 s. The second tested formulation, H30W (30 wt.% paraffin-load), presented a lower Delta rf,% with respect to H10W at GOX = 400 kg/ m^2 s. On the other hand, a bigger gap between the tested formulation and the baseline was achieved. Third tested configuration is H60W and it presented a Delta rf,% equal to 1.3% at GOX = 400 kg/ m^2 s, but with very large error bars and a minimum Delta rf,% of -17.8% at GOX = 150 kg/ m^2 s. All the three configurations were tested in O_2 with the same operating conditions showing similar results. An explanation for the missing rf enhancement with paraffin loads was given based on two main reasons. The first one is the charring behavior of HTPB binder that, probably, yields to the entrapment of the melted paraffin layer, leading to the inhibition of melted droplets entrainment. The second reason was related to surface roughness changes due to the paraffin load. Effects of surface roughness on the overall rf was evaluated by an open-literature model for rf determination. Considering achieved results with paraffin-loading, a second type of blend has been investigated, in which stearic acid was exploited. In particular, a fuel formulation with 30% of stearic acid showed rf performance similar to these of the baseline. Probably, in spite of the inhibition of possible entrainment phenomena (due to the stearic acid melting), this behavior is mainly due to a fatty acid interaction with HTPB curing reaction.
In questo lavoro è stata investigata una formulazione di combustibile basata sul polibutadiene a terminazione idrossilica (HTPB) e paraffina. La scelta del filler è stata determinata dalla sua capacità di garantire una ridotta viscosità dello strato liquido durante la combustione che, aggiunta alla tensione superficiale dello stesso, porta all'entrainment di gocce di combustibile nel flusso, risultando così in un aumento della velocità di regressione (rf) rispetto ai combustibili convenzionali. In questo contesto, è stata utilizzata una paraffina in polvere. La massima percentuale di paraffina (60$\%$) addizionata è stata definita tramite prove di manifattura. Le prove di combustione sono state effettuate sia in N2O che in O2 ad una p_c di 1.0 MPa e con un mOX of 6 g/s. La prima formulazione testata è la H10W (90% HTPB + 10% paraffina) che ha presentato una variazione positiva di rf rispetto a HTPB solo per alti flussi di ossidante (GOX). Per GOX minori, rf è diminuito fino a raggiungere una differenza percentuale di rf rispetto al riferimento (Delta rf,%) di -25.8% per GOX = 150 kg/ m^2 s. La seconda formulazione testata, è stata la H30W (70% HTPB + 30% paraffina). Questa formulazione ha presentato un minore Delta rf,% rispetto a H10W per GOX = 400 kg/ m^2 s, ma una maggiore riduzione di rf rispetto alla baseline per bassi GOX. La terza configurazione testata è la H60W che ha presentato un Delta rf,% = 1.3% per GOX = 400 kg/ m^2 s, ma con grandi barre di errore ed un minimo Delta rf,% of -17.8 % per GOX = 150 kg/ m^2 s. Le tre configurazioni sono state poi testate in O2 nelle stesse condizioni operative ed hanno mostrato risultati simili. La spiegazione per il mancato potenziamento del rf con l'aggiunta di paraffina, è stata identificata in due ragioni. La prima si riferisce al processo di char caratteristico del polimero in questione che probabilmente porta all'intrappolamento dello strato di paraffina liquida, inibendo così la possibilità di entrainment. La seconda motivazione è collegata alla variazione di rugosità della superficie rispetto alla quantità di paraffina presente nel combustibile. Gli effetti della rugosità sulla velocità di regressione sono stati calcolati secondo un modello tratto dalla letteratura. Considerando i risultati ottenuti per la configurazione di combustibile con paraffina, un secondo tipo di formulazione, in cui è stato usato l'acido stearico come additivo, è stato sperimentato. In particolare, una formulazione contenente il 30% di acido stearico ha mostrato una velocità di regressione simile a quella di HTPB. Probabilmente, questo tipo di comportamento è dato principalmente dall'interazione dell'additivo con la reazione di reticolazione di HTPB, più che dall'inibizione del possibile entrainment (dovuto alla fusione dell'acido stearico)
Evaluation of HTPB paraffin-blends as solid fuels for hybrid rocket propulsion
VERNA, FLAVIA
2015/2016
Abstract
In this study, HTPB-paraffin blended fuel formulations have been investigated. Paraffin loading was chosen in order to grant reduced melted layer viscosity during combustion. The low viscosity and the melted layer surface tension of burning paraffins yields to the entrainment of fuel droplets in the core flow, thus enhancing the regression rate (rf) with respect to conventional fuel formulations. In this work, a disperse phase paraffin, was used. The maximum paraffin-loading mass fraction (60 wt.%) was defined after proper manufacturing tests. Combustion runs were performed both in N2O and O2 at a pc of 1.0 MPa with a mOX of 6 g/s. Focusing on tests performed in N2O, the first tested configuration, H10W (10 wt.% paraffin-load), presented a positive regression rate percent variation with respect to the baseline only at high oxidizer mass flux GOX. Then r_f starts decreasing ending up with a percent rf difference over the baseline (Delta rf,%) of -25.8% at GOX = 150 kg/ m^2 s. The second tested formulation, H30W (30 wt.% paraffin-load), presented a lower Delta rf,% with respect to H10W at GOX = 400 kg/ m^2 s. On the other hand, a bigger gap between the tested formulation and the baseline was achieved. Third tested configuration is H60W and it presented a Delta rf,% equal to 1.3% at GOX = 400 kg/ m^2 s, but with very large error bars and a minimum Delta rf,% of -17.8% at GOX = 150 kg/ m^2 s. All the three configurations were tested in O_2 with the same operating conditions showing similar results. An explanation for the missing rf enhancement with paraffin loads was given based on two main reasons. The first one is the charring behavior of HTPB binder that, probably, yields to the entrapment of the melted paraffin layer, leading to the inhibition of melted droplets entrainment. The second reason was related to surface roughness changes due to the paraffin load. Effects of surface roughness on the overall rf was evaluated by an open-literature model for rf determination. Considering achieved results with paraffin-loading, a second type of blend has been investigated, in which stearic acid was exploited. In particular, a fuel formulation with 30% of stearic acid showed rf performance similar to these of the baseline. Probably, in spite of the inhibition of possible entrainment phenomena (due to the stearic acid melting), this behavior is mainly due to a fatty acid interaction with HTPB curing reaction.File | Dimensione | Formato | |
---|---|---|---|
2017_04_Verna.pdf
solo utenti autorizzati dal 07/04/2020
Descrizione: Testo della tesi
Dimensione
10.71 MB
Formato
Adobe PDF
|
10.71 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/134062