Nowadays, extensive use of transparent façade has become a design trend in modern architectural concepts. They drive natural brightness, indoor-outdoor interaction, together with a social significance of power. An incorrect design would however easily drive worrying energy demand rise and increased CO2 emissions. Several researches on high-performance glazed technology have being developed, but few focus on the exploitation of the increasing surface extension of glazed-facades as a renewable source. BIST systems show great potential in terms of architectural integration for solar energy exploitation. However, most of them are integrated in opaque facades. An innovative solar thermal collector integrated in vertical transparent facades and working as a dynamic shading device is proposed in this thesis. It consists of a water-filled triple-glazed system with a water stream able to extract absorbed heat gain within the window and exploit it as a preheating device for domestic water heating and space heating/cooling. At the same time, a dynamic shading device made with shape-morphing smart materials immersed within the cavity enhances water solar absorption while providing visual shading through self-activation. A preliminary study of the possible system applications highlights high-rise commercial/residential buildings with stable heat water demand as the most suitable building use: hotels, restaurants, heath centres, hospitals, residential building stocks, etc. Results show east/west façade orientation in warm temperate climate allows greater efficiency. Integration of the solar heating device with combined space heating/cooling and water heating service systems has been studied. Future work will regard further research activity to characterise the adaptive component here presented, through numerical simulations and experimental measurements on a working prototype. Once completed this step, in-field tests on a real room will be carried out to assess and optimise the component performance in real conditions.
L’uso estensivo di facciate continue è diventato un trend nei moderni concept architettonici. Un design scorretto tuttavia può portare ad incrementi considerevoli nella domanda di energia primaria e nelle emissioni di C02. Diverse ricerche sui sistemi vetrati altamente performanti sono state svolte, ma poche si focalizzano sullo sfruttamento della notevole estensione superficiale delle facciate vetrate come fonte rinnovabile. I sistemi BIST dimostrano di avere un grande potenziale in termini di integrazione architettonica per lo sfruttamento dell’energia solare. Tuttavia la maggior parte dei casi studi si applica a sistemi opachi di facciata. Un innovativo collettore solare integrato nelle facciate trasparenti e funzionante come sistema di oscuramento dinamico è proposto nella presente. Si tratta di un sistema a triplo vetro, in cui all’interno di una delle cavità interne scorre un flusso d’acqua in grado di assorbire il calore all’interno del sistema vetrato e sfruttarlo come sistema di pre-riscaldamento per la produzione di acqua calda sanitaria, riscaldamento e raffrescamento degli ambienti. Il sistema di oscuramento dinamico è composto da shape-morphing smart materials immersi all’interno della cavità d’acqua, i quali sono in grado di aumentare il coefficiente di assorbimento dell’acqua, generando al contempo oscuramento dinamico tramite la loro self-actuation. Uno studio preliminare sulle possibili applicazioni del sistema mostra come elevati edifici commerciali/residenziali con una costante domanda di DHW siano i più appropriati. Hotel, ristoranti, centri benessere, ospedali, residenziale, ecc. I risultati delle analisi mostrano come un orientamento a est/ovest in climi temperati caldi garantisca la miglior efficienza. L’integrazione dell’innovativo collettore solare con impianti di riscaldamento/raffrescamento degli ambienti e produzione di DHW sono quindi stati analizzati. Future work sono dunque necessari al fine di una caratterizzazione sistematica del componente, sulla base di un prototipo che consentirà misure in campo al fine di testarne il comportamento in ambienti reali, confrontandolo con i dati previsti in fase di studio preliminare.
A design proposal for a building integrated solar thermal vertical collector (BIST) as a dynamic selfactivated shading device
SANTORO, GIULIA
2015/2016
Abstract
Nowadays, extensive use of transparent façade has become a design trend in modern architectural concepts. They drive natural brightness, indoor-outdoor interaction, together with a social significance of power. An incorrect design would however easily drive worrying energy demand rise and increased CO2 emissions. Several researches on high-performance glazed technology have being developed, but few focus on the exploitation of the increasing surface extension of glazed-facades as a renewable source. BIST systems show great potential in terms of architectural integration for solar energy exploitation. However, most of them are integrated in opaque facades. An innovative solar thermal collector integrated in vertical transparent facades and working as a dynamic shading device is proposed in this thesis. It consists of a water-filled triple-glazed system with a water stream able to extract absorbed heat gain within the window and exploit it as a preheating device for domestic water heating and space heating/cooling. At the same time, a dynamic shading device made with shape-morphing smart materials immersed within the cavity enhances water solar absorption while providing visual shading through self-activation. A preliminary study of the possible system applications highlights high-rise commercial/residential buildings with stable heat water demand as the most suitable building use: hotels, restaurants, heath centres, hospitals, residential building stocks, etc. Results show east/west façade orientation in warm temperate climate allows greater efficiency. Integration of the solar heating device with combined space heating/cooling and water heating service systems has been studied. Future work will regard further research activity to characterise the adaptive component here presented, through numerical simulations and experimental measurements on a working prototype. Once completed this step, in-field tests on a real room will be carried out to assess and optimise the component performance in real conditions.File | Dimensione | Formato | |
---|---|---|---|
2016_04_Santoro.pdf
non accessibile
Descrizione: Tesi completa
Dimensione
12.62 MB
Formato
Adobe PDF
|
12.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/134113