The world and national energy scenarios are in continuous evolution due to the renewable energy sources growth. This work investigates a hybrid solution, the photovoltaic thermal module, which comes from the union of traditional photovoltaic and solar thermal. The attractive characteristics of this technology are both the thermal and electric production from solar energy and the heat recovery, which guarantees better electric conversion efficiencies. After a brief overview of the basic principles and available applications, the analysis of experimental data collected testing different modules in the laboratory was performed. A method was implemented to characterize the PVT modules, which would improve the lack of consistency and certifications on performances. With the obtained results, a preliminary energy assessment of a PVT modules system applied to a residential user was performed. Two models were implemented to evaluate the amount of the energy produced by the renewable energy system. Model 1 works with a conservative logic, while Model 2 with a more sophisticated control logic, which sets a daily fluid flow rate circulating through the PVT module. This choice affects the operating conditions of the panel and the amount of thermal energy produced, almost 30% of the annual request. Simultaneously, the electric performance was evaluated, resulting in +3% of energy production compared to a traditional PV system. Considering the slightly better results obtained from Model 2, the energy and economic performances of different layouts varying the tilt angle β and the number of panels installed were investigated. The thermal and electric productions were both positively influenced by increasing the number of panels, while they presented opposite results when β changed. The best configuration consisted of 16 units at 37.5°, generating 5867.5 € NPV and 15.99 years PBT out of the 25 of useful life. These results were achieved by adopting a favorable scenario where the electric extra energy should be sold to the national grid; however, future cost reductions and performance improvements may lead to more convenient solutions.
Gli scenari energetici globale e nazionale sono in continua evoluzione a causa della crescita delle fonti rinnovabili. Il lavoro svolto studia una soluzione ibrida, il modulo fotovoltaico termico, che nasce dall’unione del fotovoltaico tradizionale e del solare termico. I punti di forza di questa tecnologia sono la doppia produzione energetica, sia termica sia elettrica, sfruttando la stessa fonte solare e il recupero di calore che garantisce una migliore efficienza elettrica. Dopo una breve panoramica sui principi di funzionamento e le applicazioni dei PVT, è stata effettuata l’analisi sperimentale di diversi moduli con i dati raccolti in laboratorio. È stato realizzato un metodo per caratterizzare i moduli PVT, per migliorare la standardizzazione e la mancanza di certificazioni sulle prestazioni. I risultati ottenuti sono stati utilizzati per eseguire la valutazione energetica preliminare di un sistema a moduli PVT applicato ad un’utenza residenziale. Sono stati realizzati due modelli per quantificare la produzione termica del sistema. Il Modello 1 basato su una logica conservativa e il Modello 2 invece su una logica di controllo che permette di scegliere la portata del fluido circolante nel modulo. Questa scelta ha influenzato le condizioni operative e la conseguente produzione di energia termica, che soddisfa circa il 30% del carico annuale. Allo stesso tempo sono state valutate le prestazioni elettriche ed è emerso che si produce un +3% rispetto un PV tradizionale. Con i risultati ottenuti dal Modello 2 sono state analizzate le prestazioni energetiche ed economiche di configurazioni modificando l’angolo di inclinazione e il numero dei moduli installati. Al variare di β, le quantità di energia termica ed elettrica sono influenzate in maniera opposta, mentre l’aumentare del numero di pannelli è vantaggioso per entrambe le produzioni. La configurazione migliore è con 16 unità inclinate di 37,5°, che generano 5867,5 € di NPV e 15,99 anni di PBT su 25 di vita utile. Questi risultati sono stati ottenuti ipotizzando uno scenario favorevole in cui l’elettricità prodotta in eccesso è venduta alla rete nazionale, in attesa di sviluppi futuri in cui saranno ridotti i costi e migliorate le prestazioni.
Preliminary energy assessment of a PVT module characterized by experimental campaign
PAGANO, SIMONE
2015/2016
Abstract
The world and national energy scenarios are in continuous evolution due to the renewable energy sources growth. This work investigates a hybrid solution, the photovoltaic thermal module, which comes from the union of traditional photovoltaic and solar thermal. The attractive characteristics of this technology are both the thermal and electric production from solar energy and the heat recovery, which guarantees better electric conversion efficiencies. After a brief overview of the basic principles and available applications, the analysis of experimental data collected testing different modules in the laboratory was performed. A method was implemented to characterize the PVT modules, which would improve the lack of consistency and certifications on performances. With the obtained results, a preliminary energy assessment of a PVT modules system applied to a residential user was performed. Two models were implemented to evaluate the amount of the energy produced by the renewable energy system. Model 1 works with a conservative logic, while Model 2 with a more sophisticated control logic, which sets a daily fluid flow rate circulating through the PVT module. This choice affects the operating conditions of the panel and the amount of thermal energy produced, almost 30% of the annual request. Simultaneously, the electric performance was evaluated, resulting in +3% of energy production compared to a traditional PV system. Considering the slightly better results obtained from Model 2, the energy and economic performances of different layouts varying the tilt angle β and the number of panels installed were investigated. The thermal and electric productions were both positively influenced by increasing the number of panels, while they presented opposite results when β changed. The best configuration consisted of 16 units at 37.5°, generating 5867.5 € NPV and 15.99 years PBT out of the 25 of useful life. These results were achieved by adopting a favorable scenario where the electric extra energy should be sold to the national grid; however, future cost reductions and performance improvements may lead to more convenient solutions.| File | Dimensione | Formato | |
|---|---|---|---|
|
2017_04_Pagano.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
4.99 MB
Formato
Adobe PDF
|
4.99 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/134360