Polyimide is widely used in aerospace as insolation material because of its excellent dielectrical, thermal, mechanical and physical properties. However, when running in the space, spacecraft would be radiated by energized particles. Due to the high resistivity of polyimide, it is difficult to release space charges once injected. Therefore, electrostastic charges will accumulate inside polyimide, forming a local strong field. Also, those internal charges will be radiated by infrared, ultraviolet, X-ray or visible light, thus give rise to pulse discharge, which is known as deep dielectric charging. This phenomenon will threaten the safety operation of spacecraft. One way to resist the injection of high energy particles is building metal electrostatic shielding, but it may weigh more and cost more. Researches show that the most effect way to eliminate deep dielectric charging is by modifying the dielectrics with inorganic metal oxides so that the conductivity of modified dielectrics will increase fast as the electrostatic field increases. In this way the internal charges will be transferred in time and impulsive discharge will be avoild. After that, the material will come back to high insolation state. This is the though of nonlinear conductivity. Nonlinear conductivity modification of dielectric material for spacecraft may become the main solution of deep dielectric charging. In this thesis polyimide was modified by ZnO, and its nonlinear conductivity mechanism was studied. First, dielectric tests were carried out to check whether the modified polyimide could still be a good dielectric. Then, distribution of trap energy level was calculated after the thermally stimulated discharge current (TSDC) tests to know the information of trap energy level and trap density. At last, conducing tests in rising electric field at different temperatures were carried out, and the relationship between current density and field strength was discussed. Finally, nonlinear conductivity mechanism was concluded combing the result of trap energy level distribution.
Il poliimmide è ampiamente utilizzato in ambito aerospaziale come materiale di isolamento a causa delle sue eccellenti proprietà dielettriche, termiche, meccaniche e fisiche. Tuttavia, quando operano nello spazio, le navi spaziali potrebbero essere irradiate da particelle energizzate. A causa dell'elevata resistività del poliimmide, è difficile che questo rilasci le cariche spaziali una volta iniettate. Pertanto, le cariche elettrostatiche si accumuleranno all'interno del poliimmide, formando un forte campo elettrico locale. Inoltre, quelle cariche interne saranno irradiate da raggi infrarossi, ultravioletti, raggi X o luce visibile, dando così luogo ad una scarica impulsiva, nota come carica dielettrica profonda. Questo fenomeno minaccia la sicurezza delle navi spaziali. Un modo per resistere all'iniezione di particelle ad alta energia è la costruzione di schermature elettrostatiche metalliche, che, però, comporta più peso e costi più elevati. Le ricerche dimostrano che il modo più efficace per eliminare la carica dielettrica profonda è quello di modificare il materiale dielettrico con ossidi metallici inorganici in modo che la conducibilità del dielettrico risultante aumenti velocemente all’aumentare del campo elettrostatico. In questo modo le cariche interne saranno trasferite in tempo evitando le scariche impulsive. In seguito, il materiale tornerà al suo stato originale con un alto livello di insolazione. Questo è il concetto della conduttività non lineare. La modifica della conducibilità non lineare del materiale dielettrico potrebbe diventare la soluzione principale per le cariche dielettriche profonde nell’ambito delle navi spaziali. In questa tesi il poliimmide è stato modificato con ZnO e il comportamento della sua conduttività non lineare è stato studiato. Innanzitutto sono state effettuate prove dielettriche per verificare se il poliimmido modificato possa ancora essere un buon dielettrico. Quindi, la distribuzione del livello di energia di trappola è stata calcolata dopo prove di corrente di scarica stimolate termicamente (TSDC) per conoscere le informazioni del livello di energia di trappola e della densità di trappola. Infine, sono stati condotti test di conduzione con campo elettrico crescente a diverse temperature, e sono stati discussi i rapporti tra densità di corrente e forza del campo. Infine, sono riportate conclusioni riguardo il meccanismo di conducibilità non lineare combinandole con il risultato della distribuzione del livello di energia di trappola.
Research on nonlinear conductivity-temperature characteristic of polyimide modified by ZnO and its trap distribution
LI, KANGNING
2016/2017
Abstract
Polyimide is widely used in aerospace as insolation material because of its excellent dielectrical, thermal, mechanical and physical properties. However, when running in the space, spacecraft would be radiated by energized particles. Due to the high resistivity of polyimide, it is difficult to release space charges once injected. Therefore, electrostastic charges will accumulate inside polyimide, forming a local strong field. Also, those internal charges will be radiated by infrared, ultraviolet, X-ray or visible light, thus give rise to pulse discharge, which is known as deep dielectric charging. This phenomenon will threaten the safety operation of spacecraft. One way to resist the injection of high energy particles is building metal electrostatic shielding, but it may weigh more and cost more. Researches show that the most effect way to eliminate deep dielectric charging is by modifying the dielectrics with inorganic metal oxides so that the conductivity of modified dielectrics will increase fast as the electrostatic field increases. In this way the internal charges will be transferred in time and impulsive discharge will be avoild. After that, the material will come back to high insolation state. This is the though of nonlinear conductivity. Nonlinear conductivity modification of dielectric material for spacecraft may become the main solution of deep dielectric charging. In this thesis polyimide was modified by ZnO, and its nonlinear conductivity mechanism was studied. First, dielectric tests were carried out to check whether the modified polyimide could still be a good dielectric. Then, distribution of trap energy level was calculated after the thermally stimulated discharge current (TSDC) tests to know the information of trap energy level and trap density. At last, conducing tests in rising electric field at different temperatures were carried out, and the relationship between current density and field strength was discussed. Finally, nonlinear conductivity mechanism was concluded combing the result of trap energy level distribution.| File | Dimensione | Formato | |
|---|---|---|---|
|
fianl thesis-LKN.pdf
accessibile in internet per tutti
Descrizione: final thesis
Dimensione
3.89 MB
Formato
Adobe PDF
|
3.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/134872