In this thesis, we perform a comparison between Mean Field Microkinetic Modeling and Kinetic Monte Carlo approaches for the study of heterogeneous catalytic processes kinetics. The Mean Field Microkinetic Modeling approach, which is used in engineering applications, is affected by limitations due to the use of averaged coverages on the catalyst surface for the calculation of the rate of elementary steps, and therefore it is able to correctly describe only systems characterized by a homogeneous dispersion of reaction intermediates. On the other hand, the Kinetic Monte Carlo approach, which is based on the resolution of a Master Equation and can represent local coverages, allows evaluating the possible formation of non-homogeneous distributions of reaction intermediates and the effects of diffusion phenomena of the absorbates on the catalyst surface. In particular, it has been observed that the two theories converge on the same solution in the description of elementary steps that involve only one species. By contrast, significant differences are found for elementary steps that are characterized by the interaction between two neighbor intermediates. Finally, it has been noticed that high adsorption and diffusion rates of reaction intermediates on the catalyst are able to reduce those differences. This thesis work has the aim of facilitating a more rational exploitation of the two investigated approaches in the heterogeneous catalysis field. The study and the application of KMC algorithm has been carried out at University College London (UCL) from April to June 2016, sponsored by the “Tesi all’Estero” program of Politecnico di Milano.
In questa tesi viene svolto un confronto tra gli approcci Mean Field Microkinetic Modeling e Kinetic Monte Carlo per lo studio della cinetica dei processi catalitici eterogenei. L’approccio Mean Field Microkinetic Modeling, utilizzato nelle applicazioni ingegneristiche, risente di limitazioni dovute all’utilizzo di coverage mediati sulla superficie del catalizzatore per il calcolo delle velocità degli step elementari, ed è quindi in grado di descrivere correttamente solo sistemi caratterizzati da dispersione omogenea degli intermedi di reazione. L’approccio Kinetic Monte Carlo, invece, tenendo conto del coverage locale e basandosi sulla risoluzione di una Master Equation, consente di valutare la possibile formazione di distribuzioni non omogenee degli intermedi di reazione e l’effetto di fenomeni di diffusione degli adsorbati sulla superficie del catalizzatore. In particolare si è osservato che, nella descrizione di step elementari che coinvolgono solamente una specie, le due teorie convergono alla stessa soluzione. Invece, per quanto riguarda step elementari caratterizzati dall’interazione tra due intermedi di reazione adiacenti, differenze significative sono state riscontrate. Si è infine rilevato che, elevate velocità di adsorbimento e di diffusione degli intermedi di reazione sul catalizzatore, riducono tali differenze. Questo lavoro di tesi ha lo scopo di favorire un utilizzo più razionale dei due approcci investigati nell’ambito della catalisi eterogenea. Lo studio e l’applicazione dell’algoritmo KMC è stato svolto presso University College London (UCL) da Aprile a Giugno 2016, sponsorizzato dal programma “Tesi all’Estero” del Politecnico di Milano.
Confronto tra approcci kinetic Monte Carlo e mean field microkinetic modeling per cinetiche di reazioni catalitiche gas-solido
COSTANZO, STEFANO
2016/2017
Abstract
In this thesis, we perform a comparison between Mean Field Microkinetic Modeling and Kinetic Monte Carlo approaches for the study of heterogeneous catalytic processes kinetics. The Mean Field Microkinetic Modeling approach, which is used in engineering applications, is affected by limitations due to the use of averaged coverages on the catalyst surface for the calculation of the rate of elementary steps, and therefore it is able to correctly describe only systems characterized by a homogeneous dispersion of reaction intermediates. On the other hand, the Kinetic Monte Carlo approach, which is based on the resolution of a Master Equation and can represent local coverages, allows evaluating the possible formation of non-homogeneous distributions of reaction intermediates and the effects of diffusion phenomena of the absorbates on the catalyst surface. In particular, it has been observed that the two theories converge on the same solution in the description of elementary steps that involve only one species. By contrast, significant differences are found for elementary steps that are characterized by the interaction between two neighbor intermediates. Finally, it has been noticed that high adsorption and diffusion rates of reaction intermediates on the catalyst are able to reduce those differences. This thesis work has the aim of facilitating a more rational exploitation of the two investigated approaches in the heterogeneous catalysis field. The study and the application of KMC algorithm has been carried out at University College London (UCL) from April to June 2016, sponsored by the “Tesi all’Estero” program of Politecnico di Milano.File | Dimensione | Formato | |
---|---|---|---|
2017_07_Costanzo.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
2.53 MB
Formato
Adobe PDF
|
2.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/134996