The field of hybrid organic photoelectrochemical (HOPEC) water splitting is rapidly emerging as a clean technology for the production of molecular hydrogen to use as clean chemical fuel in alternative to the intensively exploited hydrocarbons. In this work we present, through a careful selection and optimization process, the relevance of hole selective contact materials on improving the efficiency of hybrid photocathodes architectures for H2 evolution. We started from a reasoned material selection based on the working principle of each layer and the stringent requirements imposed by the working conditions. Consequently, two types of architecture are realized and characterized, one employing copper iodide (CuI) as hole selective layer and one based on tungsten trioxide (WO3). The first photocathode architecture achieved exceptional results in terms of photocurrent thanks to the optimal energetic alignment between CuI and the organic photoactive layer, while the second one showed a remarkable stability thanks to the high photochemical degradation resistance of WO3. Additionally, a third architecture has been developed trying to combine the results of the two previously developed architectures in a double-HSL structure. Furthermore, a preliminary study has been performed on some novel alternatives to the state-of-the-art photoactive layer for HOPEC, one employing a non-fullerene acceptor (IDTBR) and one with the push-pull copolymer PCDTBT.

Il settore del water splitting ibrido organico fotoelettrochimico (HOPEC) sta rapidamente affermandosi come tecnologia sostenibile per la produzione di idrogeno molecolare utilizzabile come combustibile chimico alternativo agli idrocarburi, intensivamente utilizzati. In questo lavoro si presenterà, attraverso un attento processo di selezione e ottimizzazione, l’importanza che i materiali per contatti selettivi di lacune ricoprono nel migliorare l’efficienza di architetture di fotocatodi ibridi per la produzione di idrogeno. Si inizierà da una selezione critica dei materiali basata sul principio di funzionamento di ogni componente e sugli stringenti requisiti imposti dalle condizioni di lavoro. Successivamente, si realizzeranno e caratterizzeranno due architetture; una dove lo ioduro di rame (CuI) verrà utilizzato come contatto selettivo e una basata sul triossido di tungsteno (WO3). La prima architettura è stata in grado di ottenere risultati eccellenti in termini di fotocorrente grazie all’allineamento ottimale dei livelli energetici tra CuI e lo strato organico fotoattivo., mentre la seconda ha mostrato notevole stabilità grazie all’elevata resistenza al degrado fotochimico del WO3. In aggiunta, una terza architettura è stata sviluppata con l’obbiettivo di combinare i risultati delle due architetture sviluppate in precedenza in una struttura composta da un doppio contatto selettivo di lacune. Inoltre, un’analisi preliminare è stata condotta su alcuni materiali innovativi per sostituire l’attuale strato fotoattivo allo stato dell’arte. Questi materiali comprendono un accettore non-fullerene (IDTBR) e il copolimero PCDTBT.

Hybrid organic photoelectrochemical water splitting : an optimization study

ALFANO, ANTONIO
2016/2017

Abstract

The field of hybrid organic photoelectrochemical (HOPEC) water splitting is rapidly emerging as a clean technology for the production of molecular hydrogen to use as clean chemical fuel in alternative to the intensively exploited hydrocarbons. In this work we present, through a careful selection and optimization process, the relevance of hole selective contact materials on improving the efficiency of hybrid photocathodes architectures for H2 evolution. We started from a reasoned material selection based on the working principle of each layer and the stringent requirements imposed by the working conditions. Consequently, two types of architecture are realized and characterized, one employing copper iodide (CuI) as hole selective layer and one based on tungsten trioxide (WO3). The first photocathode architecture achieved exceptional results in terms of photocurrent thanks to the optimal energetic alignment between CuI and the organic photoactive layer, while the second one showed a remarkable stability thanks to the high photochemical degradation resistance of WO3. Additionally, a third architecture has been developed trying to combine the results of the two previously developed architectures in a double-HSL structure. Furthermore, a preliminary study has been performed on some novel alternatives to the state-of-the-art photoactive layer for HOPEC, one employing a non-fullerene acceptor (IDTBR) and one with the push-pull copolymer PCDTBT.
DI FONZO, FABIO
ING - Scuola di Ingegneria Industriale e dell'Informazione
27-lug-2017
2016/2017
Il settore del water splitting ibrido organico fotoelettrochimico (HOPEC) sta rapidamente affermandosi come tecnologia sostenibile per la produzione di idrogeno molecolare utilizzabile come combustibile chimico alternativo agli idrocarburi, intensivamente utilizzati. In questo lavoro si presenterà, attraverso un attento processo di selezione e ottimizzazione, l’importanza che i materiali per contatti selettivi di lacune ricoprono nel migliorare l’efficienza di architetture di fotocatodi ibridi per la produzione di idrogeno. Si inizierà da una selezione critica dei materiali basata sul principio di funzionamento di ogni componente e sugli stringenti requisiti imposti dalle condizioni di lavoro. Successivamente, si realizzeranno e caratterizzeranno due architetture; una dove lo ioduro di rame (CuI) verrà utilizzato come contatto selettivo e una basata sul triossido di tungsteno (WO3). La prima architettura è stata in grado di ottenere risultati eccellenti in termini di fotocorrente grazie all’allineamento ottimale dei livelli energetici tra CuI e lo strato organico fotoattivo., mentre la seconda ha mostrato notevole stabilità grazie all’elevata resistenza al degrado fotochimico del WO3. In aggiunta, una terza architettura è stata sviluppata con l’obbiettivo di combinare i risultati delle due architetture sviluppate in precedenza in una struttura composta da un doppio contatto selettivo di lacune. Inoltre, un’analisi preliminare è stata condotta su alcuni materiali innovativi per sostituire l’attuale strato fotoattivo allo stato dell’arte. Questi materiali comprendono un accettore non-fullerene (IDTBR) e il copolimero PCDTBT.
Tesi di laurea Magistrale
File allegati
File Dimensione Formato  
2017_07_Alfano.pdf

accessibile in internet per tutti

Descrizione: Hybrid Organic Photoelectrochemical Water Splitting: An Optimization Study
Dimensione 10.95 MB
Formato Adobe PDF
10.95 MB Adobe PDF Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/135021