The GPS technology allowed to simplify the fruition of the digital map and the navigation in external places. One of the main limits of this technology-duetotheshieldingofbuildings–isthatitcannotbeusedforanindoor environmentlocalizationsystem. Inrecentyears,lotsofresearcheshavebeen carried out about this topic, given the goal of a future development of a system able to localize and provide navigation for people inside buildings. In literature, this problem is known as Indoor Positioning and is still an open point with a high number of people working on it. In this regard, Microsoft hosts an annual competition called Microsoft Indoor Localization Competition, where companies and universities present their research on the subject. Movingfromthiscontext,wewillconductastudyofthebesttechnologies that can solve the problem of Indoor Positioning. The final goal is to design a system which will allow people with disabilities (in particular blind people)toautonomouslynavigateinsidetheirownhomeorinapublicbuilding without any constraints. More in depth, we will analyse and compare Beacon and Ultra-Wide-Band, two available technologies through which to obtain a digital signal for position processing. Next we will examine the problem of signal accuracy and we will study and develop a filtering algorithm to improve the quality of retrieved data. Finally, we will develop a mobile application (iOS platform) for navigation: itwillprovidetheuser’slocationwithinthebuildinganditwillcalculatethe optimal path to reach the selected destination, providing indication through voice guidance. As an application designed for people with disabilities, the optimal path calculation algorithm should take into account any obstacles in the environment that will be reported by the navigator if they are on the user’s path. Thepresentedsolutionmustbeabletoprovideanaccurateposition. Furthermore,thefinalsystemwillhavetobeeasytoinstallandconfiguratewithina building and the end-user needs (such as moving as freely as possible in the surrounding space) will also have to be taken into account. The proposed work and techniques will be tested in a real context in order to verify their behaviour.
La tecnologia GPS ha permesso di semplificare la fruizione di mappe e la navigazione su strada in ambienti esterni. Uno dei limiti del GPS è l’impossibilitàdiessereutilizzatoconefficaciaall’internodiunedificio. Negliultimi annisièmoltodibattutosullapossibilitàdirealizzareunsistemaingradodi permettere la localizzazione e la navigazione anche in ambienti interni. TaleproblemaènotocomeIndoorPositioningetutt’orainletteraturarimaneun quesitoapertocheinmoltistannocercandodirisolvere. Ataleproposito,Microsoft organizza annualmente una competizione nota come Microsoft Indoor LocalizationCompetition,durantelaqualeaziendeeduniversitàpresentanole loro ricerche sull’argomento. Partendo da questo contesto, effettueremo uno studio delle migliori tecnologie in grado di risolvere il problema dell’Indoor Positioning. L’obiettivo è quello di realizzare un sistema che permetta a persone con disabilità (in particolare per i non vedenti) di poter navigare liberamente all’interno di una abitazione o di un edificio pubblico autonomamente. Nello specifico, andremo ad analizzare e confrontare Beacon ed Ultra-WideBand, due possibili tecnologie attraverso le quali ricavare un segnale digitale per l’elaborazione della posizione. Successivamente verrà preso in esame il problema dell’accuratezza del segnale ed andremo a studiare e sviluppare un algoritmo di filtraggio per migliorare la qualità dei dati acquisiti. Infine svilupperemoun’applicazionemobile(periOS)ingradodieffettuarelanavigazione: segnalerà la posizione dell’utente all’interno dell’edificio, calcolerà il percorso ottimale verso una destinazione selezionata e fornirà indicazioni vocali. Essendo un’applicazione pensata per persone disabili, l’algoritmo di calcolo del percorso ottimale dovrà tenere in considerazione eventuali ostacoli presenti nell’ambiente, i quali verranno segnalati dal navigatore qualora si trovino sul percorso dell’utente. La soluzione presentata dovrà essere in grado di fornire una posizione accurata e precisa. Inoltre il sistema finale dovrà essere facilmente installabile e configurabile all’interno di un edificio e si dovrà tener conto delle esigenze dell’utentefinale,ilqualedovràpotersimuovereilpiùliberamentepossibile nello spazio circostante. Il lavoro e le tecniche proposte verranno testate in un contesto reale al fine di verificarne il corretto funzionamento.
On the use of beacons and UWB technologies for indoor navigation systems
ROTA, DIEGO;MONTALTO, SIMONE
2016/2017
Abstract
The GPS technology allowed to simplify the fruition of the digital map and the navigation in external places. One of the main limits of this technology-duetotheshieldingofbuildings–isthatitcannotbeusedforanindoor environmentlocalizationsystem. Inrecentyears,lotsofresearcheshavebeen carried out about this topic, given the goal of a future development of a system able to localize and provide navigation for people inside buildings. In literature, this problem is known as Indoor Positioning and is still an open point with a high number of people working on it. In this regard, Microsoft hosts an annual competition called Microsoft Indoor Localization Competition, where companies and universities present their research on the subject. Movingfromthiscontext,wewillconductastudyofthebesttechnologies that can solve the problem of Indoor Positioning. The final goal is to design a system which will allow people with disabilities (in particular blind people)toautonomouslynavigateinsidetheirownhomeorinapublicbuilding without any constraints. More in depth, we will analyse and compare Beacon and Ultra-Wide-Band, two available technologies through which to obtain a digital signal for position processing. Next we will examine the problem of signal accuracy and we will study and develop a filtering algorithm to improve the quality of retrieved data. Finally, we will develop a mobile application (iOS platform) for navigation: itwillprovidetheuser’slocationwithinthebuildinganditwillcalculatethe optimal path to reach the selected destination, providing indication through voice guidance. As an application designed for people with disabilities, the optimal path calculation algorithm should take into account any obstacles in the environment that will be reported by the navigator if they are on the user’s path. Thepresentedsolutionmustbeabletoprovideanaccurateposition. Furthermore,thefinalsystemwillhavetobeeasytoinstallandconfiguratewithina building and the end-user needs (such as moving as freely as possible in the surrounding space) will also have to be taken into account. The proposed work and techniques will be tested in a real context in order to verify their behaviour.File | Dimensione | Formato | |
---|---|---|---|
2017_07_Rota_Montalto.pdf
accessibile in internet per tutti
Descrizione: Tesi_2017_Rota_Montalto
Dimensione
26.72 MB
Formato
Adobe PDF
|
26.72 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/135024